answersLogoWhite

0


Best Answer

v=f*wavelength v=2*.5 v=1 m/s

User Avatar

Wiki User

15y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

2w ago

The speed of a wave is calculated by multiplying its frequency by its wavelength. In this case, the speed of the waves along the string would be 1.0 meters per second (2.0 Hz * 0.50 m).

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Waves with a frequency of 2.0 hertz are generated along a string The waves have a wavelength of 0.50 meters The speed of the waves along the string is?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Waves with a frequency of 2.0 hertz are generated along a string. The waves have a wavelength of 0.50 meters. What is the speed of the waves along the string?

The speed of a wave is calculated using the formula v = f * λ, where v is the speed of the wave, f is the frequency, and λ is the wavelength. Plugging in the values given (f = 2.0 Hz, λ = 0.50 m), the speed of the waves along the string is 1.0 m/s.


The speed of a transverse wave in a string is 12 meters per second. If the frequency of the source producing the wave is 3 hertz what is its wavelength?

The formula to calculate the wavelength of a wave is: wavelength = speed / frequency. Therefore, the wavelength in this case is 4 meters (12 m/s / 3 Hz = 4 m).


Is a string vibrating at the fundamental frequency the length of half the wavelength?

No, the fundamental frequency of a vibrating string is determined by its length, tension, and mass per unit length. The length of the string is usually equal to half the wavelength of the fundamental frequency.


If we wrap a second wire around a guitar string to increase its mass what effect does this have on the frequency and wavelength of the fundamental standing wave formed on that string?

Increasing the mass of the guitar string by wrapping a second wire around it will decrease the frequency of the fundamental standing wave because the wave speed remains constant. The wavelength of the standing wave will be longer due to the decrease in frequency.


A tight guitar string has a frequency of 540 Hz as its third harmonic what will be its fundamental frequency if it is fingered at a length of only 60 percent of its original length?

If the third harmonic of the string is 540 Hz, then the fundamental frequency of the string is one-third of 540 Hz, which is 180 Hz. When the string is fingered at 60% of its length, the fundamental frequency will decrease because the shorter length results in a higher pitch. To find the new fundamental frequency, you can use the formula: (f = nf_0) where (f_0) is the original fundamental frequency.

Related questions

What is the wavelength of a sound made by a violin string that has a frequency of 640 Hz if the sound is traveling at 350 meters per second?

Wavelength = speed/frequency = 350/640 = 54.7 centimeters (rounded)


What happens to the wavelength of a wave on a string when the frequency is doubled?

The wavelength is halved.


The wavelength of a wave on a string is 1.2 meters If the speed of the wave is 60 meters per second what is its frequency?

speed = frequency × wave_length → frequency = speed ÷ wave_length = 1.2 m/s ÷ 60 m = 50 Hz.


What happens to the speed of a wave on a string when the frequency is doubled?

I believe that the speed will remain constant, and the new wavelength will be half of the original wavelength. Speed = (frequency) x (wavelength). This depends on the method used to increase the frequency. If the tension on the string is increased while maintaining the same length (like tuning up a guitar string), then the speed will increase, rather than the wavelength.


Is a string vibrating at the fundamental frequency the length of half the wavelength?

No, the fundamental frequency of a vibrating string is determined by its length, tension, and mass per unit length. The length of the string is usually equal to half the wavelength of the fundamental frequency.


A wave along a guitar string has a frequency of 440Hz and a wave length of 1.5m what is the speed of the wave?

v = f h, h = lambda = wavelength. f = frequency in Hz v = velocity therefore, v = 1.5 * 440 (the units of v in this case are meters per second).


The string of a piano that produces the note middle C vibrates with a frequency of 262 Hz. If the sound waves produced by this string have a wavelength in air of 1.30 m what is the sound waves?

Question is to be corrected as to find the velocity of the sound waves Formula for velocity of the wave = frequency x wavelength Given frequency = 262 Hz and wavelength = 1.3 m So velocity = 262 x 1.3 = 340.6 m/s


What is the wavelength of sound waves produced by a guitar string vibrating at 440 Hz?

Wavelength = velocity of sound in the medium / frequency Here velocity is not given. Let it be 330 m/s So required wavelength = 330/440 = 3/4 = 0.75 m


Why does putting pressure on a string in a stringed instrument make a different sound?

"Pressure" is not what causes strings to produce sound. It's "tension" which does that. Adjusting the tuners either increases or decreases the tension, thus altering the audible pitch. Bending the strings also increases the tension. The sound is due to the vibration of the strings. Greater tension causes a shorter, higher frequency wavelength or amplitude which produces a higher pitch. Lesser tension causes a longer, lower frequency wavelength which produces a lower pitch. Depressing the strings onto the fingerboard effectively shortens the length of the string. The more a string is shortened, the shorter its vibrational wavelength and the higher its frequency will become. The location along the fingerboard at which the string is depressed serves the same function as does the nut when a open string is sounded.


A wave along a guitar string has a frequency of 440 Hz and wavelength of 1.5 m What is the speed of the wave?

since v=f(lambda), where v is the speed in metres per second, f is the frequency in hertz and lambda the wavelength in metres , for this question, v= 440 x 1.5=660m/s


A cello string 75m long has a 220-Hz fundamental frequency How do you find the wave speed along the vibrating string?

75 x 2 = 150 cm [wavelength = 2x part of string that it's vibrating] 150cm / 100 = 1.5m [convert to meters] 220s x 1.5m = 330m/s [speed] So in a way, your measuring is wrong due to the fact that you measured the whole string instead of the part that's vibrating after being plucked or bowed.


What is the wavelength of the standing waves if the string is 1.5 m long?

The wavelength of the standing wave on a string that is 1.5 m long can be calculated using the formula: wavelength = 2L/n, where L is the length of the string and n is the number of nodes or antinodes.