When the lac operon controls the expression of proteins in the E.coli cell that can break down lactose into two sugars, glucose and galactose.
When lactose is present, it binds to the repressor that typically sits on the lac operon, changing the repressor's conformation such that it can no longer bind to the lac operon. Because of this, RNA polymerase can now transcribe the gene into mRNA, which in turn is translated into the proteins that can break down lactose.
My answer is 3, I am pretty sure I am right, but I would double check to make sure. I am in ninth grade taking biology at PineTree.
t68u56r3
it is by lac operon syastem
The lac operon is switched on so the E. coli can use it as a food source.
gene expression occurring at transcription
E. coli binds with lactose which changes its conformation so that it no longer binds to DNA. This allows the lactose operon to be transcribed.
When the lac operon controls the expression of proteins in the E.coli cell that can break down lactose into two sugars, glucose and galactose. When lactose is present, it binds to the repressor that typically sits on the lac operon, changing the repressor's conformation such that it can no longer bind to the lac operon. Because of this, RNA polymerase can now transcribe the gene into mRNA, which in turn is translated into the proteins that can break down lactose.
The DNA sequence located near the promoter of the lactose operon in E. coli that regulates its expression is called the lac operator. The lac operator binds the lac repressor protein, which inhibits transcription of the operon when lactose is absent. When lactose is present, it binds to the repressor, causing it to release from the operator and allowing transcription to proceed.
if a regulatory protein in its active state turns off the expression of the operon, the operon is said to be negatively regulated by the regulatory protein. if the regulatory protein in its active state truns on the operon, the operon is positively regulated by the regulatory protein. an operon regulated by a repressor is therefore negatively regulated, because the presence of the active repressor prevents transcription of that operon. in contrast, an operon regulated by an activator is positively regulated, because in its active state the activator protein turns on transcription of the operon under its control. the lac operon of E. coli repressor(lac repressor) is synthesized through the activity of the gene lac I, known as regulator gene. the active form of the lac repressor, is a tetramer that contains four copies of the gene I product. in the absence of the inducer, the repressor binds to the lac operator sequence, preventing RNA polymerase from binding to the promoter and transcribing the structural genes. thus the lac operon is negatively regulated associated with the lac operon, there is another site, 16 base pairs upstream of the promoter, which is used for a positive control of the gene expression. this site is called catabolic activator protein site or cyclic AMP(cAMP) protein site or catabolite gene activator(cga) site, because it is utilized for binding of CAP or cga to stimulate gene expression. CAP can bind to this site only when it is bound with cAMP. by binding to it, the CAP-cAMP complex exerts a positive control over the transcription process. it has an effect exactly opposite to that of repressor binding to an operator. yhe effector molecule cAMP determines the effect of CAP on lac operon transcription. presence of glucose inhibits the formation of cAMP and prevents it to bind to CAP
The molecule that typically causes transcription of an operon is an inducer, which can either activate or repress the operon by binding to a regulatory protein. In the case of an inducible operon like the lac operon in E. coli, lactose acts as an inducer by binding to the repressor protein and preventing it from blocking transcription.
The lac genes in E. coli are regulated by the lac operon, which is controlled by a repressor protein. The repressor binds to the operator region of the DNA, blocking the transcription of the lac genes. When lactose is present, it binds to the repressor, causing a conformational change that releases the repressor from the operator, allowing for the expression of the lac genes.
trp operon