answersLogoWhite

0


Best Answer

increases

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What happens to the number of free electrons and holes in an intrinsic semiconductor when the temperature decreases?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

How intrinsic semiconductor can be made into extrinsic semiconductor?

at higher values of temperature the intrinsic carrier concentration become comparable to or greater than doping concentration in extrinsic semiconductors. thus majority and minority carrier concentration increases with increase in temperature and it behaves like intrinsic semiconductor.


Is the current in intrinsic semiconductos du to fre electrons or valence electrons and what is the diff between them?

Well intrinsic semiconductor is semiconductor crystal with no impurities in it. In intrinsic semiconductor the electrons in valence band(valence electrons) gain energy(due to thermal enegry) and break free into conduction band(means it become free electrons). As this electron breaks free, a vacancy is created in place of it. It is called as a hole. This hole has a positive charge. So current in semiconductor is due to flow of this free electrons and holes. But this current is very small in magnitude. The difference between free electrons and valenece electrons is that valence electrons are often bonded to other atoms in crystal. But free electrons can freely move throughout the crystal.


What is meant by intrinsic semiconductor?

Semiconductor in pure form (i.e. without doping) is called intrinsic or i-type semiconductor. The no of charge carrier in this case is determined by the materials itself only and not by the impurities. In an intrinsic semiconductor number of excited free electron is equal to the number of holes.


What is an intrinsic semiconductor and what is an extrinsic semiconductor?

intrinsic semiconductor is an un-doped semiconductor, in which there is no impurities added where as extrinsic semiconductor is a doped semiconductor, which has impurities in it. Doping is a process, involving adding dopant atoms to the intrinsic semiconductor, there by gives different electrical characteristics


What you understand by the term intrinsic semiconductor and how an intrinsic semiconductor is turned into either a p type or an n type material?

An intransic material is a material that have been used in doping process.There are two type of intrinsic material n type and p type.

Related questions

Which has greater mobility in intrinsic semiconductor Electrons or holes?

The mobility of electrons is always greater than holes. Only the number of electrons and holes would be same in an intrinsic semiconductor.


What is the effect of temperature on an intrinsic semiconductor?

An intrinsic semiconductor is basically a pure semiconductor, though some might argue that a small amount of doping can still yield an intrinsic semiconductor. In the crystal structure of this material, there are very few electrons crossing the band gap into the conduction band, and this stuff doesn't want to conduct much current. But as temperature increases, more electron-hole pairs will appear as electrons jump that band gap and take up places in the conduction band. And if you guessed that increasing temperature will permit the intrinsic semiconductor to conduct current flow a bit better, you'd be right. The intrinsic semiconductor has a positive temperature coefficient. More heat, more conduction under the same conditions.


How intrinsic semiconductor can be made into extrinsic semiconductor?

at higher values of temperature the intrinsic carrier concentration become comparable to or greater than doping concentration in extrinsic semiconductors. thus majority and minority carrier concentration increases with increase in temperature and it behaves like intrinsic semiconductor.


What are the advantages of intrinsic semiconductor?

due to the poor conduction at room temperature,the intrinsic semiconductor as such,is not useful in the electronic devices.hence,the current conduction capability of the intrinsic semi conductor should be increased. this can be achieved by adding a small amount of impurity to the intrinsic semi conductor


Why does an extrinsic semiconductor behave like an intrinsic semiconductor at high temperature?

With the increase in temperature, the concentration of minority carriers starts increasing. Eventually, a temperature is reached called the critical temperature (85° C in case of germanium and 200° C in case of silicon) when the number of covalent bonds that are broken is very large and the number of holes is approximately equal to number of electrons. The extrinsic semiconductor now behaves essentially like an intrinsic semi-conductor.


What is the effect of temperature on transistor?

conductivity of semiconductors increases with increase in temperature as breakdown of covalent bonds take place in the semiconductor due to increase in temp but more & more increase in the temp may result in the breakdown or damage of the semiconductor which results in the decrease in conductivity of semiconductor


Is the current in intrinsic semiconductos du to fre electrons or valence electrons and what is the diff between them?

Well intrinsic semiconductor is semiconductor crystal with no impurities in it. In intrinsic semiconductor the electrons in valence band(valence electrons) gain energy(due to thermal enegry) and break free into conduction band(means it become free electrons). As this electron breaks free, a vacancy is created in place of it. It is called as a hole. This hole has a positive charge. So current in semiconductor is due to flow of this free electrons and holes. But this current is very small in magnitude. The difference between free electrons and valenece electrons is that valence electrons are often bonded to other atoms in crystal. But free electrons can freely move throughout the crystal.


Why pure semiconductor just behave like an insulator?

At absolute zero (0K), an intrinsic semiconductor will act like a perfect insulator. At this temperature, the electrons in the valence band will remain there. The heat energy required to excite the electrons from the valence band to the conduction band is insufficient at 0K. When the temperature increases, some of the electrons from the valence band got excited and moves to the conduction band. This will give rise to the conductivity of the semiconductor. i.e in 0 k(0 kelvin) the pure semi conductor the electrons in the valance band don't do any thing.They are lazy for conductivity.But when increasing the temperature increase the energy of electrons and they try to move.At the end electrons win and they can to move.So it happened a conductivity.


What is intrinsic concentration?

in an undoped semiconductor, the number of carrier available per unit volume for conduction is the intrinsic carrier concentration. These are the loosley bonded outermost electrons of the parent atom which can be freed at room temperature hence both type of carrier (n and p) are equally present in the specimen.


What is meant by intrinsic semiconductor?

Semiconductor in pure form (i.e. without doping) is called intrinsic or i-type semiconductor. The no of charge carrier in this case is determined by the materials itself only and not by the impurities. In an intrinsic semiconductor number of excited free electron is equal to the number of holes.


Which element increases its electrical conductivity as its temperature increases?

Silicon because it is an intrinsic semiconductor.


What is an intrinsic semiconductor and what is an extrinsic semiconductor?

intrinsic semiconductor is an un-doped semiconductor, in which there is no impurities added where as extrinsic semiconductor is a doped semiconductor, which has impurities in it. Doping is a process, involving adding dopant atoms to the intrinsic semiconductor, there by gives different electrical characteristics