answersLogoWhite

0

Totally Transformers are not real but there planet is real but it is full of dark energy.Anyway if they we're real then you can call the transformers i mean autobot's

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

What components compose the excitation current of transformer how the are modeled in the transformer's equivalent circuit?

Excitation current Io = Iw + Iu


What is transformer turns ratio excitation current?

This is the current level needed to energize a transformer to its rated voltageThe clue is in the name! 'Excitation' means to create a magnetic field. So the excitation current is the current drawn from the supply which sets up the magnetic field around the core.


What components comprise the excitation current of a transformer?

A transformer's excitation current can be resolved into two components. The first is in phase with the primary voltage, and is responsible for the losses. The second lags the supply voltage by 90 degrees, and is responsible for magnetising the core.


How to test Excitation Current of a transformer?

To test the excitation current of a transformer, you can perform an open-circuit test, where the primary winding is connected to the rated voltage while the secondary winding is left open. Measure the current flowing through the primary winding using an ammeter; this current is the excitation current. It's essential to ensure the transformer is at the specified voltage and frequency during the test for accurate results. Additionally, record the voltage and power factor for further analysis if needed.


What is exciting current in transformer?

Excitation current is the current necessary to "turn on" the transformer so it can be used. It's energy that is lost in the use of the transformer. Most of this loss I believe is associated with the hysterisis loop, although some will be lost as eddy currents.


A devise that increases or decreases the voltage of alternating current?

TRANSFORMER


Why does the no-load characteristic differ for increasing and decreasing excitation current?

The no-load characteristic of a generator differs for increasing and decreasing excitation current due to magnetic hysteresis, residual magnetism, and core saturation effects. When the excitation current increases, the magnetic domains in the iron core gradually align with the applied magnetic field, resulting in a higher generated electromotive force (EMF). However, as the excitation current decreases, these magnetic domains do not immediately return to their original unaligned state. This lag in realignment causes the generated voltage to remain higher during the decreasing phase of excitation than during the increasing phase at the same level of excitation current. This phenomenon is known as magnetic hysteresis. Even when the excitation current is zero, the magnetic core retains some level of magnetisation, known as residual magnetism. This residual magnetic field means that when the excitation current starts increasing again, it takes additional current to overcome this residual alignment before the generated voltage rises significantly. As a result, the voltage is initially lower when increasing the excitation current from zero. Conversely, during the decreasing phase, the residual magnetism keeps the voltage higher than it would be if the core were fully demagnetised, further contributing to the difference between the increasing and decreasing curves. As the excitation current increases, the magnetic core of the generator approaches saturation. Near saturation, any further increase in excitation current results in only a small increase in generated voltage because the core's magnetic domains are almost fully aligned. When the excitation current decreases from this saturated state, the magnetic domains gradually return to a less aligned state. This gradual realignment causes the generated voltage to decrease differently than it increased, contributing to the asymmetry between the increasing and decreasing excitation phases.


What is the significant relationship of the no load loss in excitation current test in transformer?

The no load losses are the losses caused by energizing the transformer. These are constant losses, regardless of loading. This in effect tells you the efficiency of the transformer. (Power in) - (no load losses) = (Power out)


A device that increases the voltage of an alternating current is called?

That's called a transformer.


Current travels from a power plant to a transformer that increases voltage through a what?

circuit


What is knee point voltage of current transformer?

10 % increase in voltage gives you 50 % increase in excitation current is called knee point voltage. To measure this first demagnetise the CT and apply voltage gradually from secondary keeping primary winding open circuited. while doing this above phenomeneo will be obsesrved.


Does a fluorescent ballast use power when no bulbs are in the fixture?

Yes, there is an excitation current that flows through the primary side of the transformer which is located in the magnetic ballast's casing.