The electronegativity increase in a period from left to right; in a group decrease by descending.
decreases from top to bottom
As you go across a period; Left to right, the electron affinity increases. As you go down a group; top to bottom, the electron affinity decreases.
Down the group electron affinity decreases Across a period electron affinity increases. However, it should be noted that chlorine is having higher electron affinity than flourine due to the small size of fluorine atom)
Ionization energy would be similar.
No, nonmetals do not always have higher electron affinity than metals. Electron affinity depends on the specific element and its position in the periodic table. Some metals can have higher electron affinities than certain nonmetals.
No, it is not. Electron affinity follows a trend like electronegativity and hence increases as we move from left to right across a period. So, Fluorine has the highest electron affinity among 1st period elements.
AnswerElectron affinity is the energy released when we add an electron to the outermost orbit of the atom. Halogens are the higher in electron affinity, and chlorine has the higher electron affinity than rest of the halogens. The irregularity in the electron affinity trend between Cl and F is due to the small size of the F atom. Although F definitely has a higher attraction for an electron than Cl (as evidenced by its high electro negativity value), the small size of the F atom means that adding an electron creates significant repulsion. Since electron affinity is an energy measurement, the total energy associated with electron affinity winds up being the energy that is released by the electron binding to the nucleus, minus the energy involved in overcoming the electrical repulsion in the outer shell.This makes the fluoride anion so formed unstable due to a very high charge/mass ratio. Also, fluorine has no d electrons which limits its atomic size. As a result, fluorine has an electron affinity less than that of chlorine.
The trend in reactivity of Group 7 elements (halogens) is opposite to that of Group 1 elements (alkali metals) due to their differing electron configurations and tendencies to gain or lose electrons. Group 1 elements have one electron in their outer shell and readily lose it to achieve a stable electron configuration, making them highly reactive. In contrast, Group 7 elements have seven electrons in their outer shell and tend to gain an electron to complete their octet, which makes them more reactive as you move up the group. Therefore, while reactivity increases down Group 1, it increases up Group 7.
Due to small size and high electron density of oxygen compared to sulphur, interelectronic repulsion is higher in oxygen, resulting in less energy being released when an electron is added to oxygen, due to lesser stability after electron is added, which is due to the interelectronic repulsion in the small oxygen atom. Hence electron affinity value is lower. It is an abnormality and exception to the general periodic trend of electronic affinity values.
Generally electron affinity goes up as you go from left to right across the periodic table, and decreases as you go down a column. However, fluorine is an exception -- and the element with the highest electron affinity is chlorine.(Note that the most electronegative element is fluorine however; 'electronegativity' is not exactly the same as 'electron affinity'.)Electronegativity is the ability of an atom in a molecule to draw bonding electrons to itselfElectron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion.The reason that the electron affinity is not as high as might otherwise be predicted for fluorine, is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).
Electronic affinity increases as you move up a group, because going up a group there are fewer energy levels that stand between the postively charged nucleus and the outer level electrons. This doesn't really come into play as much as the trend moving across periods though. Electron affinity goes up left to right across a period, because as you approach the non-metals, the desire for atoms to gain electrons to satisfy the octet rule/achieve noble gas configuration goes up. By the time you reach the halogens (group 17), that affinity is very high, which makes the halogens the most reactive non-metals.
one should look for predictable changes and patterns