No, it is not.
Electron affinity follows a trend like electronegativity and hence increases as we move from left to right across a period.
So, Fluorine has the highest electron affinity among 1st period elements.
In general, electron affinity does not increase steadily from left to right. Firstly, only non-metals have electron affinities greater than 0. Secondly, the ordering of these electron affinities is O<N<F; S<P<Cl
Cl and F
The reason that the electron affinity is not as high as might otherwise be predicted for fluorine is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).
They are both from the same group, yes. But F is above Cl so it means that the F's valence shell is nearer the nucleus (or at "lower level") than the valence shell in Cl, which causes F to have more effective nuclear charge. This fact explains the more electron affinity* in F in relation to Cl and therefore F is more reactive. * - electron affinity refers to a free atom. electronegativity refers to an atom in a molecule.
Fluorine ion (F-) has a larger size than a neutral fluorine atom (F) because the additional electron in the F- ion increases the electron-electron repulsion, causing the electron cloud to expand. This results in a larger effective atomic radius for the fluorine ion compared to the neutral fluorine atom.
In general, electron affinity does not increase steadily from left to right. Firstly, only non-metals have electron affinities greater than 0. Secondly, the ordering of these electron affinities is O<N<F; S<P<Cl
Cl and F
AnswerElectron affinity is the energy released when we add an electron to the outermost orbit of the atom. Halogens are the higher in electron affinity, and chlorine has the higher electron affinity than rest of the halogens. The irregularity in the electron affinity trend between Cl and F is due to the small size of the F atom. Although F definitely has a higher attraction for an electron than Cl (as evidenced by its high electro negativity value), the small size of the F atom means that adding an electron creates significant repulsion. Since electron affinity is an energy measurement, the total energy associated with electron affinity winds up being the energy that is released by the electron binding to the nucleus, minus the energy involved in overcoming the electrical repulsion in the outer shell.This makes the fluoride anion so formed unstable due to a very high charge/mass ratio. Also, fluorine has no d electrons which limits its atomic size. As a result, fluorine has an electron affinity less than that of chlorine.
Generally electron affinity goes up as you go from left to right across the periodic table, and decreases as you go down a column. However, fluorine is an exception -- and the element with the highest electron affinity is chlorine.(Note that the most electronegative element is fluorine however; 'electronegativity' is not exactly the same as 'electron affinity'.)Electronegativity is the ability of an atom in a molecule to draw bonding electrons to itselfElectron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion.The reason that the electron affinity is not as high as might otherwise be predicted for fluorine, is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).
No, nitrogen does not have a low electron affinity. Electron affinity increases as you go up and to the right on the periodic table. Thus, Groups I and II elements (ex. Cs, Ba, Sr, etc.) have LOW electron affinities and the halogens in Group VII (Br, Cl, F, etc) have the HIGHEST electron affinities. Chlorine has the HIGHEST electron affinity on the periodic table.(Fluorine is an exception in this case.)
The reason that the electron affinity is not as high as might otherwise be predicted for fluorine is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).
They are both from the same group, yes. But F is above Cl so it means that the F's valence shell is nearer the nucleus (or at "lower level") than the valence shell in Cl, which causes F to have more effective nuclear charge. This fact explains the more electron affinity* in F in relation to Cl and therefore F is more reactive. * - electron affinity refers to a free atom. electronegativity refers to an atom in a molecule.
Electron affinity of an element is defined as the energy released by adding an electron to a gaseous atom of the element. With the electronic configuration of the fluroine atom being [Ne] 2s2 2p5, it needs just one more electron to form the fluoride ion (F-) which has the noble gas structure and is much more stable.
Measure the equilibrium constant for the reaction of thermal electrons with a species at different temperatures. this has been done with an electron capture detector. another way to measure it is to make a negative ion and shine light on it and measure the energy of the electrons removed by this process Dr.Edward Chen
F = QE , F = maelectron has (-Q)proton has (+Q) SO they have same force in magnitude and different directions ..electron has mass = 9*10^-31proton has mass = 1.6*10^-27mass of proton is biggerso the magnitude of acceleration for electron will be bigger ...
The cation of sodium has 11 protons and 10 electrons.
Fluorine ion (F-) has a larger size than a neutral fluorine atom (F) because the additional electron in the F- ion increases the electron-electron repulsion, causing the electron cloud to expand. This results in a larger effective atomic radius for the fluorine ion compared to the neutral fluorine atom.