In general, electron affinity does not increase steadily from left to right.
Firstly, only non-metals have electron affinities greater than 0.
Secondly, the ordering of these electron affinities is O<N<F; S<P<Cl
No, it is not. Electron affinity follows a trend like electronegativity and hence increases as we move from left to right across a period. So, Fluorine has the highest electron affinity among 1st period elements.
No, nonmetals do not always have higher electron affinity than metals. Electron affinity depends on the specific element and its position in the periodic table. Some metals can have higher electron affinities than certain nonmetals.
Generally electron affinity goes up as you go from left to right across the periodic table, and decreases as you go down a column. There are exceptions however. See the Related Questions to the left for some examples of the exceptions as well as an explanation.
I would have to answer by asking about the ongoing line segment that joins the origin and a variable point in a system of polar or spherical coordinates. What is the length of a radius vector?
The elements present at right side groups of the periodic table are non-metals. They have high electron affinity and ionization energy.
The electronegativity increase in a period from left to right; in a group decrease by descending.
Electron affinity is an elements' ability to attract electrons and is variable for each element. Generally the more electronegative atoms are furthest to the right bottom of the periodic table and ascending to the left the elements lose their electron accepting ability.
As you go across a period; Left to right, the electron affinity increases. As you go down a group; top to bottom, the electron affinity decreases.
Increases from left to right in a period
No, nitrogen does not have a low electron affinity. Electron affinity increases as you go up and to the right on the periodic table. Thus, Groups I and II elements (ex. Cs, Ba, Sr, etc.) have LOW electron affinities and the halogens in Group VII (Br, Cl, F, etc) have the HIGHEST electron affinities. Chlorine has the HIGHEST electron affinity on the periodic table.(Fluorine is an exception in this case.)
Down the group electron affinity decreases Across a period electron affinity increases. However, it should be noted that chlorine is having higher electron affinity than flourine due to the small size of fluorine atom)
No, it is not. Electron affinity follows a trend like electronegativity and hence increases as we move from left to right across a period. So, Fluorine has the highest electron affinity among 1st period elements.
No, nonmetals do not always have higher electron affinity than metals. Electron affinity depends on the specific element and its position in the periodic table. Some metals can have higher electron affinities than certain nonmetals.
Electron affinity tends to become more exothermic as you move right across a period because the effective nuclear charge increases, leading to a stronger attraction between the nucleus and the incoming electron. This results in a more stable electron configuration and a release of energy.
Atomic size increases to the bottom left, and the following increase up and to the right with exceptions: Electronegativity Electron Affinity (Z-effective) Ionization Energy Elements to right have fuller valence shells, etc
Generally electron affinity goes up as you go from left to right across the periodic table, and decreases as you go down a column. However, fluorine is an exception -- and the element with the highest electron affinity is chlorine.(Note that the most electronegative element is fluorine however; 'electronegativity' is not exactly the same as 'electron affinity'.)Electronegativity is the ability of an atom in a molecule to draw bonding electrons to itselfElectron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion.The reason that the electron affinity is not as high as might otherwise be predicted for fluorine, is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).
Chlorine (Cl) would most likely have a positive electron affinity. Typically, elements with high electron affinities are found on the right side of the periodic table, closer to the noble gases. Among the choices given, Argon (Ar) is a noble gas and has a positive electron affinity.