38.4 *10-34J
The energy of a photon can be calculated using the formula E = h * f, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency of the photon. Thus, for a frequency of 5 x 10^12 Hz, the energy of the photon would be 3.31 x 10^-21 Joules.
Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.
Photon energy is proportional to frequency ==> inversely proportional to wavelength.3 times the energy ==> 1/3 times the wavelength = 779/3 = 2592/3 nm
The energy of a photon can be calculated using the relationship E = hf where h is Planck's constant 6.626 x 10^-34 m^3 kg /s and f is the frequency in s^-1 (Hz). The energy of this photon is 3.13 x 10^-31 J.
I presume you asking, "How can an atom of size about 1 angstrom absorb a photon whose wavelength is 5000 angstroms? Wouldn't the photon be too large for that atom?" The paradox is resolved in this way: the instant you start to discuss electro-magnetic radiation as a photon instead of a transverse electro-magnetic wave, then you negate the wave-length aspect of the light. Instead, you view light as a collection of photons -- particles whose "size" (if that word has meaning) is point-like -- with a specific energy instead of specific wavelength. A photon is NOT a snake-like wave, vibrating like a rubber band, with a length at least that of its wave-length, as it moves through a medium. A photon is a point particle with a specific energy. You can describe light as a EM wave with a wave-length OR as a collection of point particles. You can NOT do both at the same time. Light exhibits the characteristics of one OR the other, but NEVER both.
A photon is a particle with negligible mass, whose energy and momentum are determined by its frequency and wavelength. It is a fundamental particle that carries electromagnetic radiation.
An electromagnetic wave with a longer wavelength will have a smaller frequency, and less energy per photon.An electromagnetic wave with a longer wavelength will have a smaller frequency, and less energy per photon.An electromagnetic wave with a longer wavelength will have a smaller frequency, and less energy per photon.An electromagnetic wave with a longer wavelength will have a smaller frequency, and less energy per photon.
Overtone
The frequency of a photon with a wavelength of 6000 Ångströms can be calculated using the formula: frequency = speed of light / wavelength. For this case, the speed of light is approximately 3.00 x 10^8 m/s. Converting the wavelength to meters, we get 6.00 x 10^-7 m. Plugging these values into the formula, we find the frequency to be approximately 5.00 x 10^14 Hz.
Mix it with a local oscillator whose frequency is (the IF frequency) away from the frequency of the FM signal you're interested in.
The answer is in the question! 5 Hz Also, a wavelength cannot be 5 cycles - wrong units.
The energy of a photon is given by E = hc/λ, where h is the Planck constant, c is the speed of light, and λ is the wavelength. Plugging in the values gives E = (6.63 x 10^-34 J s * 3 x 10^8 m/s) / (600 x 10^-9 m) = 3.31 x 10^-19 J.