The frequency of the homozygous recessive genotype.
In the Hardy-Weinberg equation, q2 represents the frequency of homozygous recessive individuals in a population for a specific allele. It is calculated by squaring the frequency (q) of the recessive allele in the population.
The frequency of the homozygous recessive genotype.
The frequency of the homozygous dominant genotype.
The p and q variables in the Hardy-Weinberg equation represent the frequencies of the two alleles in a population. The equation is often written as p^2 + 2pq + q^2 = 1, where p and q represent the frequencies of the dominant and recessive alleles, respectively.
p and q represent the frequencies of two types of alleles.
p represents the square root of the frequency of the homozygous genotype AA.
Hardy-Weinberg problems involve calculating allele frequencies in a population to determine if it is in genetic equilibrium. Examples include calculating the frequency of homozygous dominant, heterozygous, and homozygous recessive individuals. These problems can be solved using the Hardy-Weinberg equation: p2 2pq q2 1, where p and q represent the frequencies of the two alleles in the population.
p represents the square root of the frequency of the homozygous genotype AA.
p^2 + 2pq + q^2 = 1
To determine how allele frequency changes
The frequency of the homozygous dominant genotype.
The Hardy-Weinberg Equilibrium equation: p2 + 2pq + q2 = 1 p is frequency of dominant allele A q is frequency of recessive allele a p + q always equals 1 pp or p2 is probability of AA occurring qq or q2 is probability of AA occurring 2pq is probability of Aa occurring (pq is probability of Aa, qp is probability of aA, so 2pq is probability of all heterozygotes Aa) These add up to 1 because they represent all possibilities. The frequency of the homozygous recessive genotype