23hours 56minutes 4seconds (rounded)
The rotation period of a geostationary satellite is equal to one sidereal day, which is approximately 23 hours, 56 minutes, and 4 seconds. This period matches the time it takes for the satellite to orbit the Earth once and remain fixed relative to a specific point on the Earth's surface.
Geostationary satellite
The orbital time period of a geostationary satellite is approximately 24 hours, specifically about 23 hours, 56 minutes, and 4 seconds. This allows the satellite to maintain a fixed position relative to a point on the Earth's surface, as it orbits the Earth at the same rotational speed. Geostationary satellites are positioned at an altitude of about 35,786 kilometers (22,236 miles) above the equator.
A geostationary satellite does not trace a path over the surface of the earth because that is what geostationary means - the satellite is stationary over a point on the Earth.
Aryabhatta
Watch the satellite, with either a telescope or a very highly directional radio antenna. An observation period of twelve hours will be long enough to answer the question. If the satellite appears to move in the sky by more than a few tenths of a degree during that time, then it is not in geostationary orbit.
The height of a geostationary satellite from the surface is approximately 35,786 kilometers (22,236 miles).
A geostationary satellite takes approximately 24 hours to complete one revolution around the Earth. This period matches the Earth's rotation period, allowing the satellite to remain fixed over a specific point on the equator. As a result, it appears stationary relative to the surface of the Earth.
Geostationary satellites are in an orbit that's 22,282 mi (35,786 km) above the surface of the Earth. For more on Geostationary satellite orbits, visit http://www.idirect.net/Company/Satellite-Basics/How-Satellite-Works.aspx
No. Geostationary orbits are equatorial, but equatorial orbits are not necessarily geostationary. To be geostationary, the orbit needs to be equatorial, circular and at the altitude such that one orbit takes one sidereal day (approximately 24 hours 3 minutes 56 seconds. ) An equatorial orbit need only be located above the equator, may have any period and need not be circular.
No. A geostationary satellite appears to be stationary in the sky, which means not moving. This is a big part of the reason why it is referred to as a geo'stationary' satellite.
It should be possible to have the perfectly geostationary satellites. But it is not possible. Perfectly geostationary satellite can not be made. Such satellite is pulled away by other objects like moon, sun and other planets from different directions. This force changes the velocity of the satellites.