100>9877
The boiling point of 2 m KF in water is 102.4ºC. The boiling point of a 0.5 m aqueous solution of LiOH is the same as the boiling point of a 0.5 m aqueous solution of LiCl.
True. The addition of a nonvolatile solute to a solvent increases the boiling point of the solution compared to the pure solvent. This is known as boiling point elevation, and it occurs due to the decrease in vapor pressure of the solution.
Higher then the boiling point of the solvent.
Boiling Point Elevation
The boiling point of a concentrated aqueous solution of sodium chloride is higher than that of pure water. This is due to the presence of the solute, which raises the boiling point of the solution through a process called boiling point elevation. The exact boiling point will depend on the concentration of the sodium chloride in the solution.
The boiling point of a solution can be determined by measuring the temperature at which the solution changes from a liquid to a gas. This temperature is typically higher than the boiling point of the pure solvent due to the presence of solute particles in the solution.
The boiling point is 101 oC.
At the boiling point liquids become gases and if the solution contain dissolved solids they remain as residues.
The boiling point elevation of a solution can be determined by using the formula: Tb i Kf m, where Tb is the boiling point elevation, i is the van't Hoff factor, Kf is the cryoscopic constant, and m is the molality of the solution. By plugging in the values for these variables, one can calculate the boiling point elevation of the solution.
It all depends on the liquid, like waters boiling point is diffent then something like Mercury
Lower. The boiling point of ethanol is 78 degrees C. Adding salt to water raises the boiling point of that solution above 100 degrees C.
To determine the boiling-point elevation of the solution, we need to use the formula: ΔTb = iKbm, where ΔTb is the boiling point elevation, i is the van't Hoff factor (for napthalene, i = 1 because it doesn't dissociate), Kb is the ebullioscopic constant of the solvent (benzene), and m is the molality of the solution (2.47 mol/kg). Plug in the values and solve for ΔTb. Add this value to the boiling point of benzene (80.1°C) to find the boiling point of the solution.