The balanced equation for the reaction is N2 + 3H2 --> 2NH3
Thus, the mole ratio of nitrogen to ammonia in the balanced equation is 1:2.
To calculate the number of grams of oxygen needed to react with 6.78 grams of ammonia, we first write out the balanced chemical equation for the reaction between ammonia (NH3) and oxygen (O2) to form nitrogen monoxide (NO) and water (H2O). Then we use the stoichiometry of the equation to find the molar ratio between ammonia and oxygen. Finally, we convert the mass of ammonia to moles and then use the molar ratio to find the mass of oxygen needed.
N2 + 3H2 -> 2NH3 The stoichiometric equation (or balanced equation) for the formation of ammonia from this we can read off the mole ratio between hydrogen and ammonia; 3M H2 needed to produce 2M NH3 times each by 9 (so the ratio remains the same and 18M NH3 is formed) 27M H2 needed to produce 18M NH3
The equation for the formation of ammonia from nitrogen and hydrogen gases at standard temperature and pressure is N2 + 3 H2 -> 2 NH3. The gram molecular mass of ammonia is 17.03 and the gram molecular mass of divalent nitrogen is 28.0134. Therefore, designating the unknown mass of nitrogen needed as p, the proportion 660/p equals (2 X 17.03)/28.0134 is valid. This expression is algebraically equivalent to 660 = (34.06)p/28.0134, for which p = 543 grams, rounded to the justified number of significant digits, limited by the three significant digits specified by the given number 600.
Hydrazine and ammonia are composed of the same elements but have different chemical and empirical formulas. Ammonia is NH3, Hydrazine is N2H4 they have the same elements but in a different ratio.
N2 + 3H2 -----> 2NH3 so 3 moles of hydrogen produce 2 moles of ammonia. Therefore 12.0 moles of hydrogen will produce 8 moles of ammonia.
The ratio of nitrogen to hydrogen in ammonia is 1:3, as it contains one nitrogen atom and three hydrogen atoms.
To calculate the mass of ammonia formed, first write out the balanced chemical equation for the reaction between nitrogen and hydrogen to form ammonia: N₂ + 3H₂ → 2NH₃ Next, calculate the moles of nitrogen in 3.80 g using the molar mass of nitrogen (N₂). Then use the mole ratio from the balanced equation to determine the moles of ammonia formed. Finally, convert the moles of ammonia to grams using the molar mass of ammonia (NH₃) to find the mass formed.
Ammonia's Chemical makeup is NH3 This means that there is 1 Nitrogen atom for every 3 Hydrogen atoms, giving it a ratio of 1N:3H
The elements in ammonia are nitrogen and hydrogen in an atomic ratio of 1:3.
When nitrogen and hydrogen combine to form ammonia (NH3), the ratio of hydrogen atoms to nitrogen atoms is 3:1. This means that there are three hydrogen atoms for every nitrogen atom in one ammonia molecule.
To calculate the number of grams of oxygen needed to react with 6.78 grams of ammonia, we first write out the balanced chemical equation for the reaction between ammonia (NH3) and oxygen (O2) to form nitrogen monoxide (NO) and water (H2O). Then we use the stoichiometry of the equation to find the molar ratio between ammonia and oxygen. Finally, we convert the mass of ammonia to moles and then use the molar ratio to find the mass of oxygen needed.
1 nitrogen (N) to 3 hydrogen (H) 1:3 which produces one molecule of ammonia
In the equation N2+3H2=2NH3, the amount of ammonia produced from 50g of N would be 16.667g.
In ammonia (NH3), the molar mass is 17 g/mol. To find the mass of nitrogen in 125 g of ammonia, first, calculate the number of moles of ammonia in 125 g. Then, multiply the moles of ammonia by the molar ratio of nitrogen in ammonia (1 mol of N for every 1 mol of NH3), and finally, multiply by the molar mass of nitrogen (14 g/mol) to find the mass of nitrogen. This will give the mass of nitrogen in 125 g of ammonia.
In a molecule of ammonia (NH3), which forms when nitrogen and hydrogen combine, the ratio of hydrogen atoms to nitrogen atoms is 3:1.
N2 + 3H2 -> 2NH3 The stoichiometric equation (or balanced equation) for the formation of ammonia from this we can read off the mole ratio between hydrogen and ammonia; 3M H2 needed to produce 2M NH3 times each by 9 (so the ratio remains the same and 18M NH3 is formed) 27M H2 needed to produce 18M NH3
Ammonia is made up of nitrogen and hydrogen, combined specifically in the ratio of one to three... generating the formula NH3