answersLogoWhite

0


Best Answer

Is called depolarization.

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the reversal of the resting potential owing to an influx of sodium ions called?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Biology

At the threshold stimulus sodium ions start to move into the cell or out of cell to bring about the membrane depolarization?

For depolarisation to occur as part of an action potential, +40 mV inside the neuron fibre compared to outside the membrane. For summation after a synapse to determine whether the post-synaptic neuron will fire an action potential, the threshold is +20mV inside the neuron compared to the outside.


Which membrane potential occurs because of the influx of Na plus through chemically gated channels in the receptive region of a neuron?

An excitatory postsynaptic potential, a type of graded potential, occurs because of the influx of Na+ through chemically gated channels in the receptive region, or postsynaptic membrane, of a neuron. Graded potentials are generated by chemically gated channels, whereas action potentials are produced by voltage-gated channels.


What effect does potassium have on the resting potential of a cardiac cell?

Hyperkalemia is an increase in extracellular K. Driving force of an ion depends on two factors, voltage and concentration gradient. For K voltage gradient is pushing K into the cell but the concentration gradient is driving K out of the cell. However, the total driving force for K is out of the cell because the concentration gradient is that strong. When there is an increase in K on the outside, the driving force for K decreases.The equilibrium potential for K is -95mV. This means if K was freely permeable to the cell's membrane, it would reach equilibrium at -95mV. Another way to look at this is that efflux of K is the same as influx of K and the cell's new resting membrane potential would increase from a normal value of -70mV to -95mV. Note that I said it would increase even though the value became more negative. This is because the change in membrane potential has increased.Since the driving force of K has decreased, the equilibrium potential has also decreased. From a value of -95mV it is decreased to let's just say -80mV. Since a normal resting membrane potential is regularly -70mV, the decrease in equilibrium potential of K has decreased this resting membrane potential to say -60mV now. This is a depolarization of the cell.If this process happens quickly, it will depolarize the cell to the threshold value and you will have an action potential. However, if the hyperkalemia is severe, the cell will stay depolarized because the K equilibrium has decreased to a point where the cell cannot hyperpolarize back to threshold or resting membrane potential.If this process happens slowly, the inactivation gates of the sodium voltage-gated channels will automatically shut and the cell cannot depolarize even if it reaches threshold values. It must hyperpolarize back to resting membrane potential and the inactivation gates of the sodium voltage-gated channel will reopen.


What causes an action potential when it binds the motor end plate?

Chemically gated sodium channels open up when neurotransmitters bind to receptors in the motor end plate. This causes an action potential along a muscle membrane or nerve cell.


When can a second nerve impulse cannot be generated?

The generation of a second action in some neurons can only happen after a refractory period, when the membrane potential has returned it's base level or even more negative. This is because some types of Na+ channels inactivate at a positive potential and then require a negative potential to reset. Other neurons have other types of channels and can fire multiple action potentials to a single depolarization.

Related questions

What happens when a neuron is polarized?

When a neuron is polarized, usually by the influx of chloride ions into the neuron, it is incapable of creating an action potential (incapable of firing). Only when the neuron returns to a resting potential, via pumping ions back across the membrane, can it be depolarized (sodium ion influx) to generate an action potential.


Influx of Na plus till 70mV?

The electrical potential difference across a cell membrane (the resting potential) is around -65 mV, inside negative. In nerve cells (neurones) or muscle cells this potential difference is reversed during an action potential. Sodium (Na+) channels open and Na+ ions enter the cell down their concentration gradient. This entry of positive charge depolarises the membrane ie it cancels out the resting pootential and then reverses it, so the potential becomes positive inside and negative outside, giving a potential of about +50mV.


What is the electrical charge of an action potential?

The electrical potential of the cell body changes during an action potential from a negative potential of around -70 mV to a positive potential of +40 mV. The resting potential, however, remains constant.


An action potential is caused by an influx of these ions into the cell?

sodium ions


Involves the influx of negative ions to depolarize the membrane?

Action Potential


At the threshold stimulus sodium ions start to move into the cell or out of cell to bring about the membrane depolarization?

For depolarisation to occur as part of an action potential, +40 mV inside the neuron fibre compared to outside the membrane. For summation after a synapse to determine whether the post-synaptic neuron will fire an action potential, the threshold is +20mV inside the neuron compared to the outside.


Is calcium a neurotransmitter?

No, calcium itself is not a neurotransmitter BUT it is highly important in the process of the action potential. The action potential triggers the influx of calcium at the end of the terminal bouton, causing the influx of Ca2+ into the cell and this triggers for the release of the neurotransmitter. :)


potential increases positively. This typically occurs due to?

an influx of sodium ions into a cell


When action potential generate the internal part of the axon becomes______ due to influx of sodium?

Positive


How is an action potential self-regenerating?

depolarizing currents established by the influx of Na+ flow down the axon and trigger an action potential at the next segment


How does the neuron moves a resting place to firing and then back to resting state?

The event in which a neuron's membrane potential rapidly rises from its resting potential and then falls back to its resting potential is called an action potential.The neuron fires an action potential and returns to its resting state in the following manner:Initially the resting potential of the inside of the cell membrane of a neuron with respect to the outside is about -70mV (this condition is referred to as polarized).As neural signals from inputs at the dendrites of the neuron move down the dendrites and across the soma (cell body), they arrive at the beginning of the axon, called the axon hillock; those signals are comprised of quantities of sodium ions which have been pushed to the axon hillock by an influx of sodium ions through ligand-gated sodium ion channels (ion pores which open from the action of a chemical messenger neurotransmitters in a receptor portion of the ion gate) in the dendrites which have been opened by neurotransmitters released by a pre-synaptic neuron diffusing across the synaptic cleft into receptors at the dendrite.Firing: If enough quantity of sodium ions reach the axon hillock to raise the membrane potential at that point to a threshold value of about -55mV(the trigger voltage), this is sufficient to open voltage-gated sodium ion pores in the initial segment of the axon, which allows more sodium ions in, raising the membrane voltage to from 50mV to 100mV (called depolarization), which cause nearby v-gated Na ion pores to open, which lets in more sodium ions, which open successive v-gated ion pores along the length of the axon. This moving (action) potential (voltage) is the neural impulse.Returning to resting state: during the peak of the action potential, when the membrane potential is at it greatest, sodium pores begin to close, and potassium pores are opened, and since there is more potassium inside the cell than outside, potassium ions begin to leave the neuron through those channels; with the loss of these positively charged ions, the membrane voltage becomes more and more negative, opening more potassium pores, until the membrane voltage actually undershoots the resting potential momentarily. At this point the potassium pores begin to close, and the membrane potential rises back to the resting potential.(please see the links below for additional explanations)


What is in the cell membrane that can be opened or close?

There is more potassium inside the cell during a resting period...as an action potential occurs, the cell becomes depolarized, or in other words there is an influx of sodium, allowing the membrane to open. As the action potential comes to an end, the cell repolarizes, meaning the levels of sodium rush outside of the cell again, while the potassium flows back in. As another action potential takes place, this happens over again.