answersLogoWhite

0


Best Answer

Time complexity to locate a node in a list of n nodes is O(1) at best (first node), O(n) at worst (last node) and O(n/2) on average. Once located, deleting a node takes constant time O(1).

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is time complexity to delete a node in singly linked list?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

What is best and worst case of time complexity and space complexity of insert and delete operation in singly linked list doubly linked list?

When inserting or extracting at the end of a singly-linked list or at the beginning or end of a doubly-linked list, the complexity is constant time. Inserting or extracting in the middle of a list has linear complexity, with best case O(1) when the insertion or extraction point is already known in advance and a worst case of O(n) when it is not.


Convert single linked list to double linked list?

You copy a singly linked list into a doubly linked list by iterating over the singly linked list and, for each element, calling the doubly linked list insert function.


What operation is supported in constant time by the doubly linked list but not by the singly linked list?

examples:- delete this node (identified by a pointer)- insert a new node before this node- replace this node with another node


Traversing in Doubly Linked List is faster then Singly Linked List?

Traversing a doubly linked list is generally faster than traversing a singly linked list, but the speedup depends on how you do the traversal:Traversing from first to last node: No difference.Random access: Doubly linked list is faster, the difference is a fixed factor. (Like twice as fast. Which makes it still very slow for random access compared to arrays.)Reverse order: Doubly linked list is just as fast traversing "backwards" as "forwards", while a singly linked list traversing in reverse order needs to traverse the entire list once for every element in the list - it is a LOT slower. (Time complexity O(n) for doubly linked list, O(n*n) for singly linked, if you are familiar with the notation.)If you are talking about the computer science "big O notation", doubly linked and singly liked lists are the same. This is because the Big O notation ignores fixed factors and only looks at how time increases with the length of the list, and in this respect the two are the same. (Except for the special case of traversing the list in reverse order. Even here a singly linked list could do it in O(n) time - same as a doubly linked list - by reversing the list (O(n)) before traversing it (O(n)) for a total time of 2*O(n), which by the rules of Big O is the same as O(n).)


Which of the following data structures can be randomly accessed giving loc A. linked list implemented using array B. singly linked list C. double linked list D. both single and double linked list?

Which of the following data structures can be randomly accessed giving loc?A. linked list implemented using arrayB. singly linked listC. double linked listD. both single and double linked listThe answer is A.

Related questions

What is best and worst case of time complexity and space complexity of insert and delete operation in singly linked list doubly linked list?

When inserting or extracting at the end of a singly-linked list or at the beginning or end of a doubly-linked list, the complexity is constant time. Inserting or extracting in the middle of a list has linear complexity, with best case O(1) when the insertion or extraction point is already known in advance and a worst case of O(n) when it is not.


Convert single linked list to double linked list?

You copy a singly linked list into a doubly linked list by iterating over the singly linked list and, for each element, calling the doubly linked list insert function.


Common operation of singly linked list?

Common operations on a singly linked list include insertion (at the beginning, end, or specific position), deletion (from the beginning, end, or specific position), traversal (visiting each node in the list), searching (finding a specific value), and updating (modifying the value of a node).


Which is the easy insertion operator single linked-list or double-linked list?

It is easier to insert into a singly linked list.


What operation is supported in constant time by the doubly linked list but not by the singly linked list?

examples:- delete this node (identified by a pointer)- insert a new node before this node- replace this node with another node


what are the differences between singly link list and doubly link list?

singly linked list stores only the address of next node while doubly linked list stores the address of previous node and next node and hence it is called doubly linked list. In singly linked list only forward traversing is possible while in doubly linked list forward and backward traversal is possible.


What is the disadvantage of singly linked list?

This is a searching question.


What is a singly linked linear list?

A singly linked list is a linked list which only provides links in "one direction". Using a metaphor, a singly linked list is a one way street, while a doubly linked list is a two way street. Once you move forward in a singly linked list, there is no way to go backwards unless you kept your reference/pointer from before. A singly linked list would look like this: start ----> node1---->node2---->node3 ----> NULL You will see that node2 only has a link forward to node3 - it does not have a link backwards to node1, even though node1 has a link forwards to node2. To prevent us from permanently losing access to portions of the linked list, we generally keep a reference/pointer to "start". A doubly linked list would have twice the number of pointers/references as a singly linked list - making it very inefficient to store small datatypes. On the other hand, it would be possible to move both forwards and backwards with a doubly linked list because you have links pointing both forwards and backwards.


Traversing in Doubly Linked List is faster then Singly Linked List?

Traversing a doubly linked list is generally faster than traversing a singly linked list, but the speedup depends on how you do the traversal:Traversing from first to last node: No difference.Random access: Doubly linked list is faster, the difference is a fixed factor. (Like twice as fast. Which makes it still very slow for random access compared to arrays.)Reverse order: Doubly linked list is just as fast traversing "backwards" as "forwards", while a singly linked list traversing in reverse order needs to traverse the entire list once for every element in the list - it is a LOT slower. (Time complexity O(n) for doubly linked list, O(n*n) for singly linked, if you are familiar with the notation.)If you are talking about the computer science "big O notation", doubly linked and singly liked lists are the same. This is because the Big O notation ignores fixed factors and only looks at how time increases with the length of the list, and in this respect the two are the same. (Except for the special case of traversing the list in reverse order. Even here a singly linked list could do it in O(n) time - same as a doubly linked list - by reversing the list (O(n)) before traversing it (O(n)) for a total time of 2*O(n), which by the rules of Big O is the same as O(n).)


Which of the following data structures can be randomly accessed giving loc A. linked list implemented using array B. singly linked list C. double linked list D. both single and double linked list?

Which of the following data structures can be randomly accessed giving loc?A. linked list implemented using arrayB. singly linked listC. double linked listD. both single and double linked listThe answer is A.


What is difference between linked list and singly linked list?

Answersingly linked list has the node inserted only at one end. and the pointer corresponds to the next pointer.but in a doubly linked list, the node pointer points to the both previous and the next node.singly linked list has two nodesdoubly linked list has three nodesA doubly linked list makes sense when you need to traverse the list in both directions. You aren't able to do that with a singly linked list.


How do you delete an ith element in singly linked list?

You will need to traverse the list i times to get to the element you want deleted. Each time you go thru the list you will need to remember the forward pointer from the previous element because when you get to the element you want to delete the previous forward pointer needs to be pointed to the I + 1 element of the list.