Water Freezing
The products becoming more ordered than the reactants
An exothermic reaction with a negative entropy change indicates that the reaction releases heat to its surroundings and results in a decrease in disorder or randomness of the system.
2NO2(g) N2O4(g)
A change in temperature can affect the entropy change (delta S) of the surroundings in a chemical reaction. When the temperature increases, the surroundings absorb more heat energy, leading to an increase in entropy. Conversely, a decrease in temperature results in a decrease in entropy of the surroundings.
Only by increasing the entropy of another system.
No, because the entropy of the surroundings must increase more than the decrease in the water->ice transition, thus the net change in the entropy of the universe is positive, consistent with the second law.
no.
Entropy increases. In a reaction comprised of sub-reactions, some sub-reactions may show a decrease in entropy but the entire reaction will show an increase of entropy. As an example, the formation of sugar molecules by living organisms is a process that shows decrease in entropy at the expense of the loss of entropy by the sun.
It increases
To decrease the entropy of a static body, you would need to decrease the disorder or randomness of its particles. This can be achieved by cooling the body, which can lower the thermal motion of its particles and reduce their entropy. Other methods include applying pressure to order the particles or removing impurities that contribute to disorder.
water freezing
Processes that result in a decrease in entropy and internal energy typically involve the transfer of energy out of a system, such as in exothermic reactions or phase transitions like freezing. In these cases, the system loses heat to its surroundings, leading to a more ordered state and lower entropy. Additionally, work done on the system, such as compression, can also decrease internal energy and entropy if it results in a more organized arrangement of particles. Overall, these processes favor stability and order at the expense of energy availability.