The products becoming more ordered than the reactants
It increases
2NO2(g) N2O4(g)
water freezing
The products becoming more spread out.
CH4(g) + H2O(g) CO(g) + 3H2(g)
CO(g)+3H2(g)->CH4(g)+H2O(g)
It increases
Synthesis reactions such as dehydration synthesis. For a reaction to proceed the there must be a net decrease in the Gibbs Free Energy of the system. The Gibbs Free Energy is made up of two terms: Enthalpy or Heat Content H Entropy S For a reaction in which the entropy is increasing to proceed there would have to be a sufficient release of heat content (enthalpy) such that Change in Free Energy G would be negative, ie decrease...
Entropy can decrease in a reaction when a system transitions from a more disordered state to a more ordered state, often observed in processes like crystallization or the formation of complex molecules from simpler ones. This decrease typically occurs in a local context, as the overall entropy of the universe still tends to increase according to the second law of thermodynamics. Additionally, external energy input can drive reactions that lead to a decrease in entropy within a system. However, it’s important to remember that while entropy may decrease locally, the total entropy of the combined system and surroundings will increase.
A reaction that leads to a decrease in entropy typically involves a transition from a more disordered state to a more ordered state. For example, the formation of ice from liquid water decreases entropy, as the molecules in ice are arranged in a structured lattice. Similarly, reactions that produce a solid or a liquid from gaseous reactants can also result in lower entropy due to the reduced freedom of movement of the particles.
At high temperature the entropy increase.
water freezing
2NO2(g) N2O4(g)
CO(g)+3H2(g)->CH4(g)+H2O(g)
To determine the final entropy change for a reaction when multiplied by a choice, you would typically apply the principle of additivity of entropy. If you multiply a reaction by a factor, the change in entropy for the overall reaction will also be multiplied by that same factor. Therefore, if you have the standard entropy change for the original reaction, you would multiply that value by the factor you used to scale the reaction to find the final entropy change for the intermediate.
The meaning is more order.
The products becoming more spread out.