It depends upon the resistance values. Series resistance is the summation of all of the resistances, but to calculate the parallel is more complicated. Once the total resistance of each configuration is known, find the total current for each then multiply the current by the source voltage and this will provide the power.
1.In series connection the total resistance is equal the total number of resistor that was connected in series 2.the current is constant in a series connection 3.in a series connection total voltage is equal the number of of volt per cells
A resistance 'network' consists of a number of resistors connected together in series, or in parallel, or in series-parallel, or as a complex circuit. A 'complex' circuit is one that is not series, parallel, or series-parallel.
Series clipper diodes are in series connection with the load while Parallel clippers are in parallel connection with the load.
constant electrical quantity-series connection -current constant electrical quantity-parallel connection - voltage
Parallel, series, and series parallel
Consider t resistors with same Ohmic values. If they are in series total resistance Rt = R1 + R2. if they are in parallel then total resistance Rt = 1/R1 + 1/R2. Series connection will have higher resistance.
series connection
The ratio of the equivalent resistance of series combination to the parallel combination of n equal resistors is (n^2 - 1)/n.
A resistance 'network' consists of a number of resistors connected together in series, or in parallel, or in series-parallel, or as a complex circuit. A 'complex' circuit is one that is not series, parallel, or series-parallel.
No, series parallel, as it implies has components of the circuit configured in both series and parallel. This is typically done to achieve a desired resistance in the circuit. A parallel circuit is a circuit that only has the components hooked in parallel, which would result in a lower total resistance in the circuit than if the components were hooked up in a series parallel configuration.
The current through each resistor is equal to the voltage across it divided by its resistance for series and parallel circuits.
In series connection current will be same. in parrel connection voltage will be same and current wil be varying