answersLogoWhite

0


Best Answer

It's really difficult to select one from the list of choices that you submitted

along with your question. We can only surmise that the speed of a 'following'

particle might be the same or less than that of a leading particle.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What would be the speed of the following particles if they had the same wavelength as a photon of blue light?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How do you find the energy of a photon?

You need to know the photon's frequency or wavelength. If you know the wavelength, divide the speed of light by the photon's wavelength to find the frequency. Once you have the photon's frequency, multiply that by Planck's Konstant. The product is the photon's energy.


What is the amount of energy for each photon called?

It depends on the wavelength of the photon. Energy of each photon is hc/λ, where h = Planck's constant = 6.626x1034 Js, c = speed of light = 3x108 m/s, and λ = wavelength of the photon


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


What is particles of light called?

photon


What is the relationship between wavelength of light and the quantity of energy per photon?

The energy per photon is directly proportional to the frequency; the frequency is inversely proportional to the wavelength (since frequency x wavelength = speed of light, which is constant); thus, the energy per photon is inversely proportional to the wavelength.


What is the correct term for particles of light?

a photon


Does Light photon has more energy than x-ray photon?

Yes, due to the energy of photons/electromagnetic particles being determined by the equations below: E= hv=hc(1/v)= hc/wavelength. Where E= energy, v= frequency in Hz, h= Planck's constant, c= speed of light Electrons have a very short wavelength, and a very high frequency, thus they have much more energy than a beam of light.


In visible light color is an indication of?

Wavelength, Frequency, or Photon Energy


What particles in an atom are light particles?

Electrons are the lighter particles of an atom. If you are referring to the phenomena of light in electromagnetic radiation the particles are called photons. They are not part of an atom as such but can be emitted or absorbed by atoms under certain circumstances.


Photon particles have mass but why light does not have mass?

Light is a beam that is shot out of a light source or explosion of gas and photon particles give of that beam which does have a mass but todays technology is unable to measure it.


Who invented photon?

No one, photons are particles of light.


What is the energy J of photon with a wavelength of 601nm?

for a photon energy= Planks Constant * frequency and frequency= speed of light/wavelength so E= hc/(wavelength) h= 6.63E-34 J/s c= 3E8 m/s Plug n' Chug