The genotypes in which one or more alleles is dominant.
I think you have the question backwards, "Why isn't it possible to have more phenotypes than genotypes?" There are always more or an equal number of genotypes relative to phenotypes. The phenotype for a simple dominant/recessive interaction (for example) T for tall and t for short where TT is tall, Tt is tall and tt is short has three genotypes and two phenotypes. If T and t are co-dominant then TT would be tall, Tt would be intermediate and tt would be short. (Three phenotypes and three genotypes.)
By observing the phenotypes of individuals in a pedigree (such as their physical characteristics or traits), one can infer the genotypes that may be responsible for those traits. By looking at patterns of inheritance within the pedigree, such as autosomal dominant, autosomal recessive, or X-linked inheritance, one can make educated guesses about the genotypes of individuals based on their observed phenotypes. However, the presence of genetic variability, incomplete penetrance, or phenocopies can complicate the prediction of genotypes solely based on phenotypic information.
No.
Phenotypes are the entirety of the observable traits. Genotypes are the instructions in the genetic code. Dominant alleles override the recessive alleles, making only the dominant alleles expressed.
Genotypes are not created by phenotypes, they are the alleles/genes of the organism. Genotypes (in combination with environment) produce phenotypes. It would be expected that the genotypes Bb and BB would produce the phenotype B.
Indirectly, yes it does. But it can only act on genotypes through their phenotypes.
The tall pea plants have the phenotype of tall height. Their genotypes can vary depending on whether they are homozygous dominant (TT) or heterozygous (Tt) for the tall trait.
The diagram can be used to predict the genotypes and phenotypes of offspring by following the inheritance patterns of the parents' traits. By analyzing the alleles passed down from each parent, one can determine the possible combinations of genotypes and corresponding phenotypes that the offspring may inherit.
A Punnet square is used to find the probablitiy of certain genetic traits in the offspring of an organism (example: the traits in the children) by taking the trait of each possible parent gamete (sex cell) and combining the combinations within the squares.Example:A aA AA Aaa Aa aaSo the offspring here have a 25% chance of being homozygous (both dominant) dominant for the trait, 50% heterozygous (one dominant and one recessive) dominant for the trait, and 25% (homozygous (both recessive)) recessive for the trait.
Many possible genotypes, producing ,any possible phenotypes.
The number of possible genotypes is typically higher than the number of observable phenotypes because multiple genotypes can result in the same phenotype due to genetic variations, interactions, and environmental factors. Different combinations of genotypes and environmental influences can lead to similar outward traits, resulting in fewer distinct phenotypes than genotypes.
Aa AA aa If A dominant, two phenotypes.