Conductivity (of both heat and electricity) and malleability.
Scientists first laid down the basic constitution of a metal. Metals are composed of ions surrounded by electrons. Experimenting on the ion's bonding properties and its attraction to electrons generated the properties of metals.
Properties of metals as high boiling point, high melting point, malleability, ductility, electrical conductivity, thermal conductivity, lustre are explained by the theory of metallic bonds.
The electron sea model explains why metals are malleable and good conductors of electricity. In this model, metal atoms donate their outer electrons to form a "sea" of delocalized electrons that are free to move throughout the structure, contributing to the metal's properties.
The pool-of-shared-electrons model for metals can explain their high electrical conductivity and malleability. In this model, the atoms in a metal share their outer electrons freely, creating a "sea" of electrons that are mobile and can carry electrical charge easily, which contributes to the metal's conductivity. The delocalized nature of the electrons also allows the metal to be easily reshaped without breaking the metallic bonds, giving it malleability.
The wave model of light describes light as an electromagnetic wave that exhibits properties like interference and diffraction. The particle model of light, on the other hand, describes light as a stream of particles called photons. Phenomena like the photoelectric effect and Compton scattering can only be explained by the particle model of light, where light behaves as discrete particles (photons) interacting with matter.
Arsenic is classified as a metalloid due to its properties that are intermediate between metals and nonmetals.
Diffusion
The Particle model
model
Light traveling as a wave means that it exhibits properties such as interference, diffraction, and polarization. These properties can be explained by the wave nature of light, where it propagates through oscillations of electric and magnetic fields perpendicular to each other and to the direction of travel.
Galileo explained the backwatds motion of the planets
Maxwell's equations are the set of fundamental equations that describe the behavior of electromagnetic waves, including their propagation, interaction with matter, and generation. These equations unify electricity and magnetism, showing how changing electric fields create magnetic fields, and changing magnetic fields create electric fields. The wave equation, derived from Maxwell's equations, describes the propagation of electromagnetic waves through space.