Fred Ludgenburg
It depends if you mean Reverse transcription PCR (RT-PCR) or real time PCR (qPCR) - (there are misnomers often used with real time being (RT)Earliest article I could find on reverse transcription isCoupled reverse transcription-polymerase chain reaction (RT-PCR) as a sensitive and rapid method for isozyme genotyping. Gene, 1990, 93, 271-275 published by Mocharla, H., Mocharla, R., Hodes, M. E.,
Kary Mullis is an American scientist. He developed the polymerase chain reaction (PCR), a powerful technique used to produce copies of DNA. PCR is now widely used in molecular biology and in the diagnosis of genetic diseases. He won the Nobel Prize in 1993.
types of pcr: AFLP -PCR. Allele-specific PCR. Alu-PCR. Assembly -PCR. Assemetric -PCR. Colony -PCR. Helicase dependent amplification. Hot start pCR. Inverse -PCR. Insitu -pCR. ISSR-PCR. RT-PCR(REVERSE TARNSCRIPTASE). REAL TIME -PCR
Some common questions that researchers often encounter about PCR include: How does PCR work? What are the different types of PCR techniques? What are the limitations of PCR? How can PCR results be validated? How can PCR be optimized for better results? What are the potential sources of error in PCR? How can PCR be used in different research applications? What are the ethical considerations when using PCR in research? How can PCR be used in clinical diagnostics? What are the current advancements in PCR technology?
PCR is a biotechnological method to amplify your gene (DNA) of your interest. It produce millions of your DNA fragments hence used in cloning. There are variants of this method using the same thermocycling principle such as touch down PCR, gradient PCR, RFLP, multiplex PCR, Q PCR, RT PCR and so on.
In 1984, Dr. Mullis developed the use of the Polymerase Chain Reaction (PCR) technique to replicate DNA. For this, he was the co-recipient of the 1993 Nobel Prize in Chemistry.
The use of dNTP is PCR and multiplex PCR
Extreme environments have been useful to scientists in inventing PCR. It was in an extreme environment like the geysers of Yellowstone that a scientist discovered that a bacteria was living in the extremely hot water and yet still could function. Before PCR we knew we could separate a strand of DNA by heating it, but there was no polymerase to duplicate it that would work at such a high temperature. The bacteria in the hot water had a polymerase that would. So now scientists use that to do PCR and create many copies of DNA.
Difference between real time PCR and reverse transcription PCR is as follows:- 1. Real time PCR is donated as qPCR and on the other hand reverse transcription PCR is denoted as RT-PCR. 2. In qPCR, the template used is single strand DNA strand whereas in the RT-PCR, the template used in process is single strand of RNA. 3. The real time PCR enables both quantification as well as detection of the DNA in the real time whereas the RT-PCR enables only the quantification of the RNA and it is little bit slower process then the qPCR as it first produce the cDNA from the template RNA strand and then process it in the similar fashion as the traditional PCR.
Nested PCR is a variation of regular PCR that involves two rounds of amplification. It is often used when the target DNA is present in low concentrations. Nested PCR can increase the sensitivity and specificity of the test compared to regular PCR. Regular PCR, on the other hand, involves a single round of amplification and is commonly used for routine DNA amplification. Nested PCR is advantageous in detecting low abundance targets, while regular PCR is more suitable for general DNA amplification purposes.
PCR assays can be both qualitative and quantitative, depending on the method used. Qualitative PCR, often referred to as conventional PCR, detects the presence or absence of a specific DNA sequence. In contrast, quantitative PCR (qPCR or real-time PCR) measures the amount of DNA, providing information on the quantity of the target sequence in a sample. Thus, PCR can serve both purposes based on the specific assay design.
In qualitative PCR specific DNA fragment is detected while in quantitative PCR our target DNA sequence not only is detected but its amount is determined (after reaction we can calculate the amount of DNA we had in our sample)