answersLogoWhite

0


Best Answer

Consider the Power Steering in a car.

The oil must move continously around the pump, hoses, and steering box in order to turn the wheels right or left.

Consider the pump as a battery or generator of electricity, the hoses to be the wires, and the steering box to be the electrical load.

If the oil does not flow, no energy is moved to the load, and the steering (work) is not done.

The high-tech answer is not simple. electrons need not to move continuously around any where not unless a EMF force is applied for an atom to be stable its nucleus has electrons moving around just like our solar system, Depending on its known characteristics each element has different number of electrons orbiting the nucleus They will maintain this orbiting path until an external force is applied .

User Avatar

Wiki User

14y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

13y ago

A free electron is, by definition, not bound to anything. It's very light, and electrically charged, which means it's affected by local electrical and magnetic fields and since it's light it's easy to move.

There's no fundamental reason a free electron has to be moving, but due to the ubiquity of electrical and magnetic fields, it's extremely likely that any given free electron will be subject to imbalanced forces, which will produce movement.

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

yes

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why free electrons move continuously?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Why metals conduct electricity?

Metals undergo a metallic bonding, meaning when two metals shares their valence electron they undergo metallic bonding. Within the metallic bond, there are enormous amount of free electrons or what we call " SEA OF ELECTRONS, MOBILISE NOT STATIONARY"constantly moving within the lattice. As we know electrons can carry electric and thermal energy through vibrations and pass the energy from each other throughout the lattice or structure. if u put a piece of metal under the sun light, eventually it will get hot and that's because electrons absorb the thermal energy from sun light and gets excited, the same way " when a guy see a hot girls" and starts vibrating.


Is the current in intrinsic semiconductos du to fre electrons or valence electrons and what is the diff between them?

Well intrinsic semiconductor is semiconductor crystal with no impurities in it. In intrinsic semiconductor the electrons in valence band(valence electrons) gain energy(due to thermal enegry) and break free into conduction band(means it become free electrons). As this electron breaks free, a vacancy is created in place of it. It is called as a hole. This hole has a positive charge. So current in semiconductor is due to flow of this free electrons and holes. But this current is very small in magnitude. The difference between free electrons and valenece electrons is that valence electrons are often bonded to other atoms in crystal. But free electrons can freely move throughout the crystal.


Why can metals conduct electricity but remain unchanged?

Only the free valence electrons forming the electron "gas" move and as many move in as move out. Only metals form this electron "gas".


What is the number of free electrons and holes in a pure semiconductor at 0k?

There are no free electrons and holes in a pure semiconductor at 0k.


What happens to an electric current running along a wire?

In the case of a metal conductor, such as a wire, an electric current is the result of a drift of free electrons along the conductor. Free electrons are electrons that have become detached from the outer orbit of the metal atoms, and move haphazardly from atom to atom. You can think of these electrons behaving somewhat like a gas that fills the voids between individual fixed atoms. This 'gas' of electrons is in a constant state of rapid, random, and chaotic motion. However, when a potential difference is applied across the ends of the conductor, there is a tendency for individual electrons to gradually move from the negative end of the conductor to the positive end. Individual electrons move in this direction VERY slowly -in the order of millimetres per hour. Since this happens to ALL the free electrons at the same time, the effect of this drift is felt practically immediately along the entire length of the conductor.

Related questions

Why do electrons move continuously around a circuit?

They only do so if there is a force pushing them (i.e., a voltage).


What are free electrons or delocalized electrons?

Not sure, but maybe you are referring to "lone pair" of electrons.


Do electrons free drift in metals?

Yes, electrons move freely in metals.


How does electricity passes through metal?

Because electrons can move freely inside of many metals. And as well known electrons are responsible for conductivity.


If glass is covalently bonded are the electrons free to move and how is this related to the electrical conductivity of glass?

No the electrons are not free to move. This means that the electrical conductivity will be relatively low. -jk


What is the difference between electrons in a metallic or ionic bond?

In an ionic bond all of the electrons are localised to the ions, none are shared or free to move. In a metallic bond electrons are free and able to move about the lattice in the solid or the melt.


Why does current generally involve the flow of electrons but not protons?

The protons are bound inside the nucleus and are not free. In conductors, the electrons are free to move.


Are Electron cloud models are used to show how electrons in the outer energy level are bonded when elements combine to form compound?

No , they are used to show that the electrons are free to move in the compound and therefore are NOT bonded . If there is a "cloud" of electrons then the electrons are free to move and can therefore conduct electricity.


What describes characteristics of a metallic bond?

Electrons move freely among many metal nuclei


Why the electrons are free to move in metals as nucleus have high charge density?

The electrons are free to move in metals because the nucleus have high charged density. This means that they move a bit faster, which is why metal gets hot, when plastics don't.


Which subatomic particle is free to move?

Electrons are free to move within an atom and between atoms, making them the subatomic particles that can easily move. Electrons are negatively charged and are responsible for the flow of electric current in conductive materials.


Why do metals conduct current easily?

Because metals have a sea of electrons. The electrons are free to move about, thus easily move to conduct heat or electricity.