because it store energy
An inductor is a device which stores energy as a magnetic energy.... Ideal inductor have no resistance.....so there is no power loss.... power loss = (I*I)*R
The resistance of an inductor can affect the efficiency of an electrical circuit. Higher inductor resistance can lead to energy loss in the form of heat, reducing the overall efficiency of the circuit. Lower resistance inductors are more efficient as they waste less energy.
When you put a light bulb in series with a inductor, the inductive reactance of the inductor reduces the current available to the light bulb, making it less bright. For this effect to be noticed, however, you need a very large inductor. To cut the current in a 60W bulb at 120VAC/60Hz by one half, for instance, you need an inductor around 0.6 henrys.
what is an inductor used for
Since we know that inductance of an inductor depends on the length of inductor by the formula L=muAN*N/l, where l is the length of inductor. So by varying the length of inductor we say that inductance of inductor varies.
a memristor is the fourth passive element in the electric circuit joining the resistor,inductor and capacitor , the word memristor is the concatenation of "memory" and "resistance"
a memristor is the fourth passive element in the electric circuit joining the resistor,inductor and capacitor , the word memristor is the concatenation of "memory" and "resistance"
As the energy stored in the inductor decreases over time in a decaying RL circuit, the power dissipation also decreases. This is because less energy is being transferred from the inductor to the resistor, resulting in lower power being dissipated in the circuit.
oxygen;]
In an ideal inductor, no, there is no voltage induced across an inductor unless the current in the inductor is changing. However, since there are no ideal inductors nor power supplies, eventually an inductor will draw a constant current, i.e. the limit of the power supply; and, since no inductor has zero ohms at equilibrium, that current will translate to voltage.
any conductor wound with few turns can be considered as an inductor
Yes, an inductor allows DC to pass through it. An inductor resists a change in current, proportional to inductance and voltage. At equilibirum, an ideal inductor has zero impedance. The differential equation for an inductor is di/dt = v / l