Silicon is actually preferred to germanium within the manufacture of semiconductor devices due to the following reasons:
A: Because the element has different property as gallium arsenide.
Silicon is generally preferred over germanium for electronic applications because it has a higher bandgap energy, allowing for the creation of more efficient and faster electronic devices. Silicon is also more readily available and easier to work with in terms of manufacturing processes compared to germanium. Additionally, silicon has better thermal stability and higher breakdown voltage, making it more reliable for long-term applications.
Silicon is preferred over germanium because it is more abundant, less costly, and has a higher thermal stability. Silicon also forms a better oxide layer, making it more suitable for integrated circuit applications. Additionally, silicon has better electron mobility and is less susceptible to thermal runaway compared to germanium.
Silicon (Si) diodes are more commonly used than germanium (Ge) diodes. Silicon diodes are preferred for most applications due to their higher temperature tolerance, lower leakage current, and greater availability. They are commonly used in rectifiers, signal processing, and various electronic circuits. Germanium diodes, while having some advantages in specific applications (such as lower forward voltage drop), are less common in modern electronics.
Silicon transistors are preferred to germanium transistors because they exhibit higher thermal stability and are less prone to temperature variations. Silicon transistors also have a higher maximum operating temperature, improved frequency response, and are more reliable in terms of long-term performance. Additionally, silicon is more abundant and easier to work with in manufacturing processes compared to germanium.
Germanium is not used in integrated circuits. Silicon is.
Silicon and Germanium are the elements used in transistors
germanium
germanium
Germanium diodes are more expensive than silicon ones, germanium is harder to process, germanium cannot be used to make integrated circuits (while early prototype integrated circuits were germanium the wiring between the integrated components cannot be integrated making it too expensive for production), germanium cannot operate with a junction temperature above 60C (silicon will operate up to 150C), and its reverse leakage current is greater. However! Germanium diodes have a lower forward voltage drop than silicon ones do, so they're better for some applications, like radio frequency detection.
Silicon is preferred in designing integrated circuits (ICs) because it is abundant, has good electrical properties, is easy to manufacture, and forms a stable oxide layer for insulation. These characteristics make silicon an ideal material for creating the transistors and other components used in ICs.
Silicon is preferred over germanium in semiconductor applications because it has a higher melting point, better thermal stability, and can form a native oxide layer for insulation. Additionally, silicon has a wider bandgap, making it more suitable for high-temperature and high-power electronic devices.