Because the force of attraction between the nucleus and the outer most electron is less. In addition, most metals (but not all) will gain the stable electronic configuration of the nearest noble gas if they lose electron.
Ionisation potential and ionisation energy are essentially the same concept - they both refer to the amount of energy required to remove an electron from an atom or molecule. The terms are often used interchangeably in practice.
Ionization energy is the energy required to remove an electron from an atom. A lower ionization energy means it is easier to remove electrons, making the metal more reactive. This is because metals with low ionization energy are more likely to lose electrons and form positive ions in chemical reactions.
The ionisation enthalpy of potassium is lower than that of sodium.
Ionisation energy decreases down the group. It is easy to remove an electron.
The first ionization energy of an atom or molecule describes the amount of energy required to remove an electron from the atom or molecule in the gaseous state.
the first ionisation energy is the energy required to remove the first most loosely bound elecctron from a neutral gaseous atom in its ground state.
The ionization energy of boron is lower than beryllium because removing an electron from boron involves taking it out of the 2p orbital, which is higher in energy than the 1s orbital of beryllium. This makes it easier to remove an electron from the 2p orbital of boron, resulting in a lower ionization energy.
when we go from left to right
Because in Boron there is a complete 2s orbital and the increased shielding of the 2s orbital reduces the ionisation energy compared to that seen in Beryllium.
Ionisation energy is defined as the amount of energy required to remove the most loosley bound or valence electron from an atom. The lower the ionisation energy, the easier it is to remove the electron. Once the electron has been removed, electroneutrality is lost and the atom develops a positive charge and is known as a positively charged ion. Now, an ionic bond is the bond formed between two oppositely charged species. For example, a bond between a positively charges sodium ion and a negatively charged chloride ion. The lower the ionisation energy, the easier it will be for the atom to lose an electron, thereby forming a positively charged species which will be capable of forming an ionic bond with a negatively charged species. Or lower the ionisation energy, the greater is the tendency to form an ionic bond.
Ionisation energy differs between elements due to variations in the number of protons in their nucleus, which affects the strength of the attraction between the electrons and the nucleus. Elements with higher atomic numbers typically have higher ionisation energies due to increased nuclear charge. Additionally, ionisation energy generally increases across a period and decreases down a group on the periodic table.
Ionisation energy, or alternatively quantum energy.