The Bohr radius, is the estimated distance between protons in the nucleus and electrons - but electrons aren't solid, stationary particles... The simple answer would be about one-twentieth of a nanometre. But this would only be reasonable if the electron were a solid particle.
The approximate distance an electron is located from the nucleus is measured by the concept of electron cloud or electron probability density. This concept is utilized in quantum mechanics to describe the distribution of the electron's probable locations within an atom.
shell
shell
shell
shell
It would not depend on the direction with respect to the nucleus. The direction of the electron has no effect on the distance of the electron from the nucleus.
The force between the nucleus and the outermost electron in a large atom is primarily governed by the attraction between the positively charged nucleus and the negatively charged electron. This force is known as the electrostatic force of attraction and is directly proportional to the product of the charges and inversely proportional to the square of the distance between the nucleus and the electron.
The distance of the electron cloud from the nucleus affects the atom's stability. When the electron cloud is closer to the nucleus, the atom is more stable. This is because the positively charged nucleus and negatively charged electrons are closer together, creating a stronger attraction. Conversely, if the electron cloud is further from the nucleus, the atom is less stable as the attraction between the nucleus and electrons is weaker.
Attraction gets smaller.
The principal energy level is the main energy level of an electron in an atom, designated by the quantum number "n." It indicates the approximate energy and distance of an electron from the nucleus. The higher the principal energy level, the higher the energy and distance of the electron from the nucleus.
The atomic radii is an estimation of the radius of an atom. The value of the atomic radii is based off an approximation of the distance from the atom's nucleus to the edge of the atom's electron cloud.
The nucleus has a width on the order of 10^(-15) meters, while an electron is (on average) a distance of 10^(-10) meters from the nucleus. If you were to magnify the nucleus to the size of a baseball, the electrons would be orbiting at a distance of around 1000 meters. That is, there are about 50,000-100,000 nucleus diameters to the electron's average radius.