Yes, the magnet force will cause the motor rotate through a full rotation. So the friend who claims to have built a motor by attaching a shaft to the core of a galvanometer and removing the spring is correct.
CommentDid your friend mention how he managed to manufacture the tiny commutator and brushes that would be necessary for this to work? Or did he explain how he changed the flux concentrator to an armature in order to give the coil some momentum? Because without these additional features, the galvanometer would be completely incapable of rotating more than 180 degrees!
Its a point on the galvanometer where the galvanometer shows no deflection as no current passes through it.
A current would register on a galvanometer when there is a flow of electric charge through the circuit that the galvanometer is connected to. The galvanometer measures the strength and direction of the current passing through it, displaying this information as a deflection on its dial.
The galvanometer constant is the factor that relates the deflection of a galvanometer to the current passing through it. It is usually given as the current required to produce a unit deflection (such as one full-scale deflection) on the galvanometer. To find the galvanometer constant, you can pass a known current through the galvanometer and measure the corresponding deflection, then calculate the constant as the current divided by the deflection.
Ohms are the unit of measurement for resistance, so an ohmmeter is a device that measures electrical resistance. A galvanometer measures the current flowing through the resistance, so the two are related. To convert a galvanometer into an ohmmeter, one needs an external battery.
A shunt resistance is a low resistance connected parallel to the galvanometer so that a large portion of current passes through the low resistance and a small fraction of current passes through the galvanometer this saves the galvanometer from damage
There is no current flow through the galvanometer in a balanced Wheatstone bridge because, in the balanced state, the voltage on both terminals of the galvanometer is the same. Since the voltage differential in zero, there can be no current.
The wire loop in a galvanometer can typically turn up to 90 degrees due to the magnetic field generated by the current flowing through it. This movement is restricted to allow for accurate measurement of the current passing through the galvanometer.
The function of a galvanometer is based on the interaction between a magnetic field and an electric current passing through a coil of wire. When a current flows through the coil, it creates a magnetic field that interacts with a permanent magnet, causing a deflection of the needle on the galvanometer scale.
galvanometer
The device that turns a needle in a galvanometer is called a coil. The coil generates a magnetic field when current flows through it, which interacts with the magnetic field produced by the permanent magnet in the galvanometer to cause the needle to deflect.
A galvanometer measures charge by detecting the flow of electric current through a coil of wire which generates a magnetic field. As charge flows through the coil, it causes a deflection in a needle or pointer on the galvanometer's display, indicating the magnitude of the charge passing through the circuit.
Since Galvanometer is a very sensitive instrument therefore it can't measure heavy currents. In order to convert a Galvanometer into an Ammeter, a very low resistance known as "shunt" resistance is connected in parallel to Galvanometer. Value of shunt is so adjusted that most of the current passes through the shunt. In this way a Galvanometer is converted into Ammeter and can measure heavy currents without fully deflected.