Yes and they are a penetrating form of radiation.
This is called inverse beta decay and it forms a neutron. Normally a neutron will decay into a proton and electron, but the opposite will happen given enough energy. Coincidentally, this is how neutron stars are formed (the immense pressure from gravity overcomes the force separating protons and electrons.)
The neutron is a part of the atom, therefore it is smaller.
Ernest Rutherford described the existence of the neutron.
electron and neutrino are formed by the decay of neutron.
Free neutrons are said to have a speed or a temperature. Both ideas mean pretty much the same thing, which is that they have an amount of energy associated with them. It is specifically measured most commonly, perhaps, in electron volts (eV), or as Million electron volts (MeV). Unfortunately, what is meant by fast or slow depends on the application, and perhaps the author or speaker. Free neutrons come from different sources and have different speeds when they are produced. As they fly about, they hit the nuclei of atoms, and may bounce, imparting some part of their energy to the atoms if they do. As time passes, they lose energy in this manner getting slower and slower. Please note, however, that not much time usually passes, because the half life of a neutron is a bit less than fifteen minutes. There are other things that neutrons can do besides bounce. They can cause decay of a radioactive atom, they can cause fission of a fissionable atom, and they can be absorbed. There is a likelihood of any of these events happening by the collision of a neutron with an atom, and the likelihood depends on several things. Of great importance is the isotope of the atom; different isotopes have different cross sections, the cross section being a measurement of how likely it is for the neutron to interact with the atom. Also very important is the temperature of the atom, and the speed of the neutron. The cross section of the atom will be greater or less depending on the speed of the neutron and the temperature of the atom, but not in a way that is easily predictable. A faster neutron might not cause fission as easily as a slower one in a given situation. The data on the nuclear cross sections of atoms by isotope, temperature, and neutron speed, were largely obtained empirically.
To calculate the energy output of a thorium subcritical reactor when you know the neutron flux input, you would multiply the neutron flux by the energy produced per neutron capture in the thorium fuel. This can be determined based on the specific design and characteristics of the reactor. By knowing the neutron flux input and the energy produced per neutron capture, you can estimate the energy output of the reactor.
Neutron is electrically neutral... But it posses a spin... And when it moves it has a finite kinetic energy...
Neutron is electrically neutral... But it posses a spin... And when it moves it has a finite kinetic energy...
energy level
During neutron-antineutron annihilation, a neutron and an antineutron collide and are converted into energy in the form of gamma rays, mesons, and other particles. This process releases a large amount of energy and results in the destruction of the neutron and antineutron.
A thermal neutron has an energy range of about 0.025 eV (electronvolts) which corresponds to its average kinetic energy at room temperature.
Absorption of neutrons by an element depends on neutron cross-section data for that element at the energy of interest. The absorption cross-section gives the probability of a neutron being absorbed by an atom of the element. Measuring the absorptions at a certain neutron energy can help in determining the propensity of an element to absorb neutrons at that energy level.
An antineutron is the antiparticle of a neutron, meaning it has the same mass as a neutron but with opposite charge. When a neutron and an antineutron interact, they can annihilate each other, releasing energy in the form of other particles. Antineutrons are commonly produced in high-energy particle physics experiments.
Fast neutron energy is characterized by high kinetic energy levels, making them effective for inducing nuclear reactions. These reactions can be utilized in nuclear power generation, nuclear weapons, and neutron imaging techniques. Fast neutron reactors can also help reduce nuclear waste and increase fuel efficiency in the nuclear industry.
Neutron
It depends on the kinetic energy the neutron has.
A neutron star emits most of its energy at higher frequencies.