A quark may be one of several categories: up (+2/3 charge), down (-1/3 charge), charmed, strange, top, and bottom. A quark, generally speaking, has no subparticles of its own that are generally accepted or discussed, but, in terms of size, the gluon, the gauge boson that mediates the "glue" force between the quarks can be construed as "smaller" in size than a quark.
People would say yes. But actually, no. Neutrino is nearly 20 times smaller.
Tau neutrino was created in 2000.
Electron neutrino was created in 1956.
I presume you mean lepton instead of lapton ;) In which case leptons are not electrons, but electrons are leptons. Leptons are a group of matter particles which do not feel the strong nuclear force and are believed to be elementary (i.e. they do not consist of smaller particles). They are: -Electron -Muon -Tau(on) -Electron neutrino -Muon neutrino -Tau neutrino and their associated anti particles (such as the anti-electron, commonly known as the positron).
The solar neutrino problem relates to the discrepancy between the proportions of the different flavours of neutrinos emitted by the sun in the theoretical model as opposed to experimental measurements. Whilst the sun primarily emitts electron neutrinos, neutrino observatories such as SNO+ detected neutrinos in roughly equal proportions of the three flavours; furthermore the quantity of electron neutrinos detected was less than the theoretically predicted value. Both of these can be explained by neutrino oscillation - in which the neutrinos alter their mass to change their flavour (ie. an electron neutrinos gain mass to change to a muon neutrino). This would also explain the relative lack of electron neutrinos, thus solving the solar neutrino problem!
I suppose that gluons are smaller because these particles are massless.
Gluons are elementary particles and are considered one of the smallest particles in the standard model of particle physics. There is currently no evidence to suggest the existence of anything smaller than a gluon within our current understanding of physics.
Depends what you mean by "smaller." The mass of a photon is smaller than even that of a neutrino. At a sub-atomic level, concepts like "volume" or "size" become almost meaningless, so it is difficult to say whether the "size" of a neutrino is greater or less than that of, say, an electron.
A particle smaller than atom is a subatomic particle, protons , neutrons, and , electrons, the smallest one is an electron, smaller than that are point particles and elementary particles, one elementary particle and point particle is a quark, up quarks down quarks the smallest single thing found so far is a GLUON, which is the force which binds/holds quarks together. Where the devil lives in anti matter there are also atoms and subatomic particles and point particles but just anti, anti- GLUON, anti-QUARK, anti-ATOM, anti-SUBATOMIC PARTICLE. There is something called the string theory, and super string theory that theorizes about bosonic/boson strings but it can not be provine yet, and I think a gluon is still alot smaller than a bosonic/boson string if they are true. HOPE THIS HELPS
A muon is larger than a gluon. A muon is a subatomic particle that is about 200 times more massive than an electron, while a gluon is a massless particle that mediates the strong nuclear force in the Standard Model of particle physics.
Yes, it has a mass - though the mass is quite small. As far as I know, the neutrino has not been found to have smaller parts.
Bosons are particles with integer spin which do not obey the Pauli Exclusion Principle, therefore a number of them may occupy the same quantum state.In general, all bosons can be classified as either mesons (composite particles) or gauge bosons (elementary bosons). Pions are examples of mesons, while photons are examples of gauge bosons.Since the name "boson" applies to a number of particles there can be no answer to this question.Bosons are part of 3 families of fundamental particles described by the Standard Model of quantum physics, and being fundamental means they have no known substructure - i.e., there isn'tanything smaller than a boson. (The same applies to quarks and leptons.)
A particle smaller than atom is a subatomic particle, protons , neutrons, and , electrons, the smallest one is an electron, smaller than that are point particles and elementary particles, one elementary particle and point particle is a quark, up quarks down quarks the smallest single thing found so far is a GLUON, which is the force which binds/holds quarks together. Where the devil lives in anti matter there are also atoms and subatomic particles and point particles but just anti, anti- GLUON, anti-QUARK, anti-ATOM, anti-SUBATOMIC PARTICLE. There is something called the string theory, and super string theory that theorizes about bosonic/boson strings but it can not be provine yet, and I think a gluon is still alot smaller than a bosonic/boson string if they are true. HOPE THIS HELPS
Yes.
A particle smaller than atom is a subatomic particle, protons , neutrons, and , electrons, the smallest one is an electron, smaller than that are point particles and elementary particles, one elementary particle and point particle is a quark, up quarks down quarks the smallest single thing found so far is a GLUON, which is the force which binds/holds quarks together. Where the devil lives in anti matter there are also atoms and subatomic particles and point particles but just anti, anti- GLUON, anti-QUARK, anti-ATOM, anti-SUBATOMIC PARTICLE. There is something called the string theory, and super string theory that theorizes about bosonic/boson strings but it can not be provine yet, and I think a gluon is still alot smaller than a bosonic/boson string if they are true. HOPE THIS HELPS
A particle smaller than atom is a subatomic particle, protons , neutrons, and , electrons, the smallest one is an electron, smaller than that are point particles and elementary particles, one elementary particle and point particle is a quark, up quarks down quarks the smallest single thing found so far is a GLUON, which is the force which binds/holds quarks together. Where the devil lives in anti matter there are also atoms and subatomic particles and point particles but just anti, anti- GLUON, anti-QUARK, anti-ATOM, anti-SUBATOMIC PARTICLE. There is something called the string theory, and super string theory that theorizes about bosonic/boson strings but it can not be provine yet, and I think a gluon is still alot smaller than a bosonic/boson string if they are true. HOPE THIS HELPS
A particle smaller than atom is a subatomic particle, protons , neutrons, and , electrons, the smallest one is an electron, smaller than that are point particles and elementary particles, one elementary particle and point particle is a quark, up quarks down quarks the smallest single thing found so far is a GLUON, which is the force which binds/holds quarks together. Where the devil lives in anti matter there are also atoms and subatomic particles and point particles but just anti, anti- GLUON, anti-QUARK, anti-ATOM, anti-SUBATOMIC PARTICLE. There is something called the string theory, and super string theory that theorizes about bosonic/boson strings but it can not be provine yet, and I think a gluon is still alot smaller than a bosonic/boson string if they are true. HOPE THIS HELPS