The strength of gravity on or near the Earth's surface
is 9.81 Newtons (2.205 pounds) per kilogram of mass.
That force causes any freely falling body to accelerate vertically
at the rate of 9.81 meters (32.2 feet) per second2 .
The gravitational field strength of the Moon is about 1.6 N/kg, which is about 1/6th of the gravitational field strength on Earth.
The gravitational field strength of Io, one of the moons of Jupiter, is approximately 1.796 m/s^2. This value is about 1/6th of Earth's gravitational field strength.
The gravitational field strength on Mars is about 3.7 m/s^2, which is about 38% of the gravitational field strength on Earth. This means that objects on Mars weigh less than they do on Earth due to the weaker gravity.
Its mass.
If we consider classical physics (Newtonian explanations) the source is unaffected. The strength of the gravitational pull decreases as the second power of the distance.
Mercury's gravitational field strength is approximately 3.7 m/s^2, which is about 38% of Earth's gravitational field strength. This means that objects on the surface of Mercury would weigh less compared to Earth due to the lower gravitational pull.
At a point between the Earth and the Moon where the gravitational field strength is zero, the gravitational pull from the Earth and the Moon cancels out, resulting in a net force of zero. This point is known as the L1 Lagrange point, where the gravitational forces are balanced due to the interaction between the gravitational pull of the Earth and the Moon.
The value of the gravitational field strength on a planet with half the mass and half the radius of Earth would be the same as Earth's gravitational field strength. This is because the gravitational field strength depends only on the mass of the planet and the distance from the center, not on the size or density of the planet.
The gravitational field strength of the Moon is about 1.6 N/kg, which is about 1/6th of the gravitational field strength on Earth.
The gravitational field strength of Io, one of the moons of Jupiter, is approximately 1.796 m/s^2. This value is about 1/6th of Earth's gravitational field strength.
The gravitational field strength of Earth and the Moon differs because each celestial body has its own mass and radius. Earth is more massive and has a larger radius compared to the Moon, leading to a stronger gravitational field on Earth. The gravitational field strength decreases with distance from the center of the body, so being closer to Earth results in a stronger gravitational pull compared to being closer to the Moon.
The gravitational field strength on Mercury is approximately 3.7 m/s^2. This means that objects on the surface of Mercury experience a gravitational force that is 3.7 times that of Earth's gravitational force.
The gravitational field strength of a planet multiplied by an objects mass gives us the weight of that object, and that the gravitational field strength, g of Earth is equal to the acceleration of free fall at its surface, 9.81ms − 2.
The gravitational field strength on Venus is about 8.87 m/s^2, which is about 91% of Earth's gravitational field strength. This means that objects on Venus would feel slightly lighter compared to on Earth.
Eris has a gravitational field strength of about 0.8 m/s² which is lower than Earth's, due to its smaller mass and size.
The gravitational field strength of Venus is about 90% of Earth's.
The gravitational field strength on Mars is about 3.7 m/s^2, which is about 38% of the gravitational field strength on Earth. This means that objects on Mars weigh less than they do on Earth due to the weaker gravity.