If you mean a hot air balloon, it is the expansion of the air caused by the propane burner. If you mean any balloon, it is the ability of the material to hold the air or gas inside which keeps it inflated.
When you inflate a balloon, the air goes inside the balloon and fills it up. The air molecules push against the walls of the balloon, causing it to expand and take on its inflated shape.
An untied inflated balloon flies because the air inside the balloon is less dense than the air outside, creating a lift force. As the balloon rises, the air pressure decreases, causing the balloon to expand further and increase in volume. This expansion of the balloon allows it to continue rising until the forces of gravity and air resistance balance out.
When an inflated balloon is released, the air inside it is less dense than the surrounding air, causing it to float upwards. This is due to the principle of buoyancy, where objects that are less dense than the air around them will float. The air trapped in the balloon makes it less dense, allowing it to rise.
When an inflated but untied balloon is released, the air inside the balloon pushes against the walls of the balloon, propelling it forward. This creates a force that causes the balloon to move in the opposite direction. The unbalanced forces result in the balloon flying across the room.
A hot air balloon is called an hot air balloon because, the inside is heated up to make it less dense, allowing it to rise. Meaning, your heating up the air inside the balloon, hence, the name: Hot air balloon.
A balloon remains inflated because the pressure of the air or gas inside the balloon is greater than the pressure of the air outside the balloon. This creates a force that keeps the rubber surface of the balloon stretched tight, preventing it from collapsing.
When you fill a balloon with air, the air molecules displace the surrounding space inside the balloon, causing the balloon to expand and stretch. The pressure of the air inside the balloon exceeds the pressure outside, creating tension in the balloon material, which keeps it inflated.
A deflated balloon is lighter than an inflated balloon because the air inside the inflated balloon adds weight to it. When the air is released, the balloon becomes lighter because it is no longer burdened by the added weight of the air molecules.
There is no difference at all if the balloon is not inflated or inflated with air.
When the balloon is inflated, it is filled with air, which has less mass than the solid material of the deflated balloon. So overall, the balloon has less mass when inflated because the mass of the air inside it is lighter than the solid material of the balloon.
The duration an air-filled balloon stays inflated can vary based on factors such as the quality of the balloon, temperature, and air pressure. Under normal conditions, an air-filled balloon can stay inflated for several days to a week before starting to deflate.
The volume of the balloon decreases
An inflated balloon weighs more than a deflated one because the air inside adds mass to the balloon. When the balloon is deflated, it contains less air or no air at all, resulting in less weight.
The balloon is inflated and stays that way because it is filled with a gas, such as helium or air, that is less dense than the surrounding air. This causes the balloon to float and maintain its inflated shape due to the difference in pressure inside and outside the balloon.
Closing the mouth of an inflated balloon helps to keep the air trapped inside. If the mouth is left open, the air can escape and deflate the balloon. Closing the mouth also helps to create pressure inside the balloon, keeping it inflated.
Yes, the air in an inflated balloon has potential energy due to the elastic potential energy stored in the balloon's stretchy material. When the balloon is released, this potential energy is converted into kinetic energy as the air rushes out.
The type of air that keeps a beach ball inflated is kinetic energy.