Most stars lie along the main sequence of the Hertzsprung-Russell (HR) diagram, which runs diagonally from the top left (hot, luminous stars) to the bottom right (cool, dim stars). This region accounts for about 90% of all stars, including our Sun, as they spend the majority of their lifetimes fusing hydrogen into helium in their cores. The main sequence is characterized by a balance between gravitational collapse and the outward pressure from nuclear fusion.
In the early 20th century, Danish astrophysicist Ejnar Hertzsprung and American astrophysicist Henry Norris Russell independently developed a graph now known as the Hertzsprung-Russell (H-R) diagram, which plots absolute brightness against spectral type. In this diagram, the brightest stars lie near the top of the diagram and the hottest stars lie to the left. On the H-R diagram, most of the stars, including the Sun, fall along a diagonal line that goes from the upper left to the lower right of the diagram. This line called the main sequence.The great majority of stars neighboring the Sun fall on the lower part of the H-R diagram's main sequence, and relatively few lie on the portion of the main sequence above the Sun. This means that most of the Sun's neighboring stars are both cooler and fainter (in absolute magnitude) than the Sun. A smaller population of brighter but cooler stars known as supergiants occupies the uppermost region of the diagram. Some stars, which are difficult to discover because they are so intrinsically faint, lie near the bottom of the H-R diagram. These faint stars are called white dwarfs.
On such a diagram, those stars lie on a curve called the "main sequence". It is not a simple relationship - for example, it isn't a straight line on the diagram. Therefore, it isn't easy to describe in words. It's best if you look up "Main sequence", for example on the Wikipedia, and look at the corresponding diagram.
The Hertzsprung-Russell diagram is a scatter graph of stars in which a star's luminosity (brightness) is plotted against its colour (temperature). Stars are not distributed all over this chart. A majority of stars lie on or near the diagonal which goes from top left (hot and bright) to bottom left (cooler and less bright). These are the main sequence stars.There are also white dwarfs which are below the main sequence whereas stars which are giants and super giants lie in the region above the main sequence.
They are both hotter and cooler because the main sequence contains a lot of stars including the Sun. The main sequence is a region on a Hertzsprung-Russell diagram which plots stars on a graph of brightness against surface temperature. Each star is a point on the diagram because it has one value of brightness and one of temperature. All the main-sequence stars lie on or near a line drawn from top left to lower right. The Sun is about halfway along the main sequence.
To effectively read a Hertzsprung-Russell diagram, one must understand that it plots a star's luminosity against its temperature. By analyzing the position of a star on the diagram, one can determine its characteristics, such as size, age, and stage of evolution. Stars follow distinct paths on the diagram as they evolve, allowing observers to identify their evolutionary stages based on their location.
The location on the Hertzsprung-Russell (HR) diagram where most stars lie is known as the main sequence. The HR diagram is a plot of stellar luminosity against surface temperature. The main sequence is a prominent band that extends diagonally across the HR diagram from high temperature and high luminosity to low temperature and low luminosity. The majority of stars, approximately 90% of all stars, are situated along the main sequence on the HR diagram. These stars are often referred to as main-sequence stars. They exhibit a smooth relationship between surface temperature and luminosity, with varying sizes and masses but sharing this common characteristic of lying on the diagonal band from the upper left to the lower right of the HR diagram. Source: Teach Astronomy - The Hertzsprung-Russell Diagram
The diagonal pattern on an H-R diagram where most stars lie is called the main sequence. This is where stars are fusing hydrogen into helium in their cores, representing the stable phase of a star's life cycle. The main sequence is a fundamental feature of stellar evolution and provides insight into a star's mass, luminosity, and temperature.
In the early 20th century, Danish astrophysicist Ejnar Hertzsprung and American astrophysicist Henry Norris Russell independently developed a graph now known as the Hertzsprung-Russell (H-R) diagram, which plots absolute brightness against spectral type. In this diagram, the brightest stars lie near the top of the diagram and the hottest stars lie to the left. On the H-R diagram, most of the stars, including the Sun, fall along a diagonal line that goes from the upper left to the lower right of the diagram. This line called the main sequence.The great majority of stars neighboring the Sun fall on the lower part of the H-R diagram's main sequence, and relatively few lie on the portion of the main sequence above the Sun. This means that most of the Sun's neighboring stars are both cooler and fainter (in absolute magnitude) than the Sun. A smaller population of brighter but cooler stars known as supergiants occupies the uppermost region of the diagram. Some stars, which are difficult to discover because they are so intrinsically faint, lie near the bottom of the H-R diagram. These faint stars are called white dwarfs.
Ball don't lie.
On such a diagram, those stars lie on a curve called the "main sequence". It is not a simple relationship - for example, it isn't a straight line on the diagram. Therefore, it isn't easy to describe in words. It's best if you look up "Main sequence", for example on the Wikipedia, and look at the corresponding diagram.
The HR diagram has the star's temperature along the horizontal axis and the absolute magnitude (brightness) along the vertical axis. Each star is represented by a single dot. Higher temperature is usually associated with more brightness so many stars lie on or near a line on the diagram called the Main Sequence. Red giant stars are found on the upper right hand quarter because they are relatively cool but still very bright.
The Hertzsprung-Russell diagram is a scatter graph of stars in which a star's luminosity (brightness) is plotted against its colour (temperature). Stars are not distributed all over this chart. A majority of stars lie on or near the diagonal which goes from top left (hot and bright) to bottom left (cooler and less bright). These are the main sequence stars.There are also white dwarfs which are below the main sequence whereas stars which are giants and super giants lie in the region above the main sequence.
They are both hotter and cooler because the main sequence contains a lot of stars including the Sun. The main sequence is a region on a Hertzsprung-Russell diagram which plots stars on a graph of brightness against surface temperature. Each star is a point on the diagram because it has one value of brightness and one of temperature. All the main-sequence stars lie on or near a line drawn from top left to lower right. The Sun is about halfway along the main sequence.
Aylar Lie
To effectively read a Hertzsprung-Russell diagram, one must understand that it plots a star's luminosity against its temperature. By analyzing the position of a star on the diagram, one can determine its characteristics, such as size, age, and stage of evolution. Stars follow distinct paths on the diagram as they evolve, allowing observers to identify their evolutionary stages based on their location.
none he's a lie
Identify the noun