The atmosphere cools with increasing altitude primarily due to the decrease in air pressure and density. As you ascend, the air expands and loses energy, which results in a drop in temperature. Additionally, at higher altitudes, there is less absorption of heat from the Earth's surface, further contributing to the cooler temperatures. This phenomenon is known as the lapse rate.
In the atmosphere, temperatures increase with altitude in the stratosphere. This layer, which lies above the troposphere, contains the ozone layer that absorbs and scatters ultraviolet solar radiation, leading to a warming effect as altitude increases. Consequently, the stratosphere experiences a temperature inversion, contrasting with the troposphere, where temperatures typically decrease with altitude.
The atmosphere becomes less dense with altitude. Atmosphere, thin though it is, has weight, and it is the weight of the air above which compresses the air below it, to greater density.
No, an atmosphere in which temperature and density increase with elevation cannot be in gravitational equilibrium. In a stable atmosphere, temperature generally decreases with altitude due to the balance between gravitational forces and thermal buoyancy. An increase in both temperature and density with elevation would lead to an unstable situation, causing the denser, cooler air below to rise, disrupting equilibrium.
The layer above the photosphere is called the chromosphere. It is a region of the Sun's atmosphere where temperatures increase with altitude. Above the chromosphere lies the corona, which is the outermost layer of the Sun's atmosphere.
The layers of the atmosphere, starting from the Earth’s surface, are the troposphere, stratosphere, mesosphere, thermosphere, and exosphere. In the troposphere, temperature generally decreases with altitude. However, in the stratosphere, temperature starts to increase with altitude due to the absorption of ultraviolet radiation by the ozone layer. In the mesosphere, temperatures again decrease with altitude, while in the thermosphere, temperatures rise dramatically as altitude increases.
it decreases
The density of Earth's atmosphere decreases with altitude. As you move higher up in the atmosphere, there are fewer molecules of gases present, leading to lower density.
The increase in temperature with an increase in altitude is called "temperature inversion." In the troposphere, temperature typically decreases with altitude, but during a temperature inversion, a layer of warmer air traps cooler air near the surface, leading to an increase in temperature with height. This phenomenon can significantly impact weather patterns and air quality.
In the atmosphere, temperatures increase with altitude in the stratosphere. This layer, which lies above the troposphere, contains the ozone layer that absorbs and scatters ultraviolet solar radiation, leading to a warming effect as altitude increases. Consequently, the stratosphere experiences a temperature inversion, contrasting with the troposphere, where temperatures typically decrease with altitude.
The atmosphere becomes less dense with altitude. Atmosphere, thin though it is, has weight, and it is the weight of the air above which compresses the air below it, to greater density.
No, an atmosphere in which temperature and density increase with elevation cannot be in gravitational equilibrium. In a stable atmosphere, temperature generally decreases with altitude due to the balance between gravitational forces and thermal buoyancy. An increase in both temperature and density with elevation would lead to an unstable situation, causing the denser, cooler air below to rise, disrupting equilibrium.
In the atmosphere, the temperature rises with altitude in the stratosphere. This increase is primarily due to the absorption of ultraviolet (UV) radiation by the ozone layer, which is located within this layer. As altitude increases, the concentration of ozone increases, leading to higher temperatures.
Temperature decreases as altitude increases because there are less molecules in the atmosphere to hold in the heat.
No, as altitude increases in the Troposphere, the temperature generally decreases. This is because the Troposphere is the layer of the Earth's atmosphere where weather occurs, and the temperature decreases with altitude due to the decrease in air pressure and thinning of the air molecules that can store heat.
As altitude increases, barometric pressure decreases. This is because the air pressure decreases with increasing altitude, as there are fewer air molecules in the atmosphere exerting pressure on a given area.
Yes it does. The higher the altitude, the cooler the temperature in general.
As you move from the troposphere (closest to the surface) to the stratosphere, temperature generally decreases with altitude due to the decreasing density of the air. In the stratosphere, temperature starts to increase with altitude due to the absorption of solar radiation by ozone. Overall, the trend is a decrease in temperature with altitude in the troposphere and an increase in temperature with altitude in the stratosphere.