They go into photosystem I.
they move through an electron transport chain to photosystem 1
From energy in photons
In photosynthesis, electrons flow from water to photosystem II, then to photosystem I, and finally to NADP+ to produce NADPH. This flow of electrons is facilitated by the electron transport chain within the thylakoid membrane of the chloroplast.
NADH and FADH2 donate electrons to different complexes in the electron transport chain because they have different energy levels and transfer electrons at different points in the chain, allowing for efficient energy production through the generation of a proton gradient.
They return to Photosystem I
They go into photosystem I.
The electrons transferred along the membrane from Photosystem II and Photosystem I use a series of protein complexes embedded in the thylakoid membrane called the electron transport chain. This chain consists of proteins that pass the electrons from one to another, ultimately leading to the production of ATP and NADPH which are essential for the light-dependent reactions of photosynthesis.
Photosystem I
Excited electrons are transferred to an electron transport chain.
The electron transport system is a series of protein complexes and molecules in the inner mitochondrial membrane that transfer electrons from electron donors to electron acceptors, generating ATP in the process. This process is crucial for cellular respiration and energy production in aerobic organisms.
Photosystem's electron travel through the electron transport chain(etc) where ATP is produced and then back to the photosystem. In non-cyclic photophosphorylation, Photosystem II electron then is absorbed by photosystem I, photosystem I electron used to form NADPH and photosystem II gets its electron from photolysis of water. For you unfortunate children using Novanet: They move through an electron transport chain to photosystem 1.
they move through an electron transport chain to photosystem 1
The electron transport chain is a series of protein complexes and molecules embedded in the inner mitochondrial membrane. It facilitates the transfer of electrons from NADH and FADH2 to oxygen, generating ATP through oxidative phosphorylation. This process creates a proton gradient that is used to drive ATP synthesis.
They absorb photons.
During non-cyclic electron flow, electrons come from water molecules that are split by photosystem II. These electrons replace the ones lost by photosystem II as they are passed along the electron transport chain.
Excited electrons are transferred to an electron transport chain.
From energy in photons