In case of plants, there is biological reduction. Carbon bi oxide and water is converted to glucose. Energy from sunlight is trapped in the form of ATP in chlorophyl. This ATP is used to in biological reduction. Energy consumed in biological reduction is same photon by photon, to energy released during biological or chemical oxidation. ( Law of conservation of energy in chemical reactions.)
Photosystem 1
False. The reactions that convert the energy in sunlight into chemical energy of ATP and NADPH are part of the light-dependent reactions in photosynthesis. The Calvin cycle, on the other hand, is the series of reactions that occur in the stroma of chloroplasts and are responsible for carbon fixation and the production of sugars.
ATP and NADPH molecules carry energy to the light-independent reactions, also known as the Calvin cycle. These molecules are produced during the light-dependent reactions of photosynthesis, where sunlight is used to generate their energy-rich forms.
From energy in photons
The materials needed in the light reaction phase of photosynthesis include sunlight, water, and chlorophyll. These components are used to convert light energy into chemical energy in the form of ATP and NADPH. Oxygen is also produced as a byproduct of this phase.
The reactions that convert the energy in sunlight into chemical energy of ATP and NADPH are called the light-dependent reactions of photosynthesis. These reactions occur in the thylakoid membranes of chloroplasts and involve the absorption of light by chlorophyll and other pigments to drive the production of ATP and NADPH through a series of electron transport chain reactions.
Photosynthesis is the reaction that requires direct energy from sunlight to produce energy carrier molecules like ATP and NADPH in plants.
Plants use photosynthesis to convert sunlight into usable energy, stored in ATP, NADPH, and glucose.
The energy to make NADPH in the light reactions of photosynthesis comes from sunlight. Light energy is absorbed by chlorophyll molecules in the chloroplasts of plant cells, which triggers a series of reactions that ultimately produce NADPH.
The source of energy in the light phase of photosynthesis is sunlight. Light energy is absorbed by chlorophyll in the chloroplasts of plants, which then converts it into chemical energy in the form of ATP and NADPH.
The energy carrying end products of light harvesting reactions are molecules like ATP and NADPH. These molecules store the energy captured from sunlight and are used in driving the subsequent biochemical reactions in plants and photosynthetic bacteria.
Photosystem 1
The carriers of energy formed during the light-dependent reaction are ATP (adenosine triphosphate) and NADPH (nicotinamide adenine dinucleotide phosphate). These molecules carry the energy captured from sunlight and help fuel the light-independent reactions of photosynthesis.
Light reaction is the first stage of the photosynthetic reaction when the sunlight is converted into the chemical energy in the form of ATP and NADPH. ... The electron transport chain produces the NADPH and ATP via ATP synthase. Thus, the light energy gets converted to the chemical energy during light reaction.
False. The reactions that convert the energy in sunlight into chemical energy of ATP and NADPH are part of the light-dependent reactions in photosynthesis. The Calvin cycle, on the other hand, is the series of reactions that occur in the stroma of chloroplasts and are responsible for carbon fixation and the production of sugars.
ATP and NADPH molecules carry energy to the light-independent reactions, also known as the Calvin cycle. These molecules are produced during the light-dependent reactions of photosynthesis, where sunlight is used to generate their energy-rich forms.
From energy in photons