answersLogoWhite

0

Increasing the extracellular potassium concentration can depolarize the resting membrane potential, making it less negative. This can lead to increased excitability of the cell.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Continue Learning about Biology

What effect will Raising the potassium ion concentration in the extracellular fluid surrounding a nerve cell have?

Increasing the potassium ion concentration in the extracellular fluid surrounding a nerve cell can lead to a decrease in the resting membrane potential and make it more positive. This can result in a decrease in the ability of the nerve cell to generate an action potential and effectively transmit signals. Ultimately, higher extracellular potassium levels can impair nerve cell function.


Does an increase or decrease in potassium extracellular ions hyperpolarize a cell?

An extracellular increase of potassium (increase of intracellular Sodium) causes depolarization. The opposite, I presume, meaning high intracellular potassium (inside cell) and high extracellular sodium (outside cell) would be hyperpolarization


The role of the sodium potassium pump in maintaining a cells resting membrane potential?

The relative concentration of sodium (Na+) and potassium (K+) in the neuron with respect to their concentration in the extracellular space is what causes the electrical potential and the differential concentration is established by a Na-K Atpase which exudes sodium and transports potassium into the neuron.


How does potassium affect the resting membrane potential of the cardiac cell?

Potassium plays a crucial role in maintaining the resting membrane potential of cardiac cells. It helps establish the negative charge inside the cell by moving out of the cell through potassium channels. This outward movement of potassium ions contributes to the polarization of the cell membrane, creating a negative resting membrane potential.


What would happen to a resting membrane potential if the sodium potassium transport pump was blocked?

During depolarization, sodium (Na) rushes into the neuron through Na channels (at the Nodes of Ranvier between the bundles of myelin "insulation"). Less Na in the extracellular fluid would mean there would be less to rush in. So, the neuron would not be depolarized as well. The resting membrane potential would be more positive on the inside.

Related Questions

Why does increasing the extracellular K cause the membrane potential to change?

Increasing extracellular potassium concentration can depolarize the cell membrane potential because potassium ions are leaking out of the cell less efficiently, leading to an accumulation of positive charge outside the cell. This disrupts the normal balance of ions and can make it easier for the cell to depolarize and generate an action potential.


What effect will Raising the potassium ion concentration in the extracellular fluid surrounding a nerve cell have?

Increasing the potassium ion concentration in the extracellular fluid surrounding a nerve cell can lead to a decrease in the resting membrane potential and make it more positive. This can result in a decrease in the ability of the nerve cell to generate an action potential and effectively transmit signals. Ultimately, higher extracellular potassium levels can impair nerve cell function.


Why increasing extracellular potassium ion reduces the net diffusion of potassium ion out of neuron through the potassium leak channel?

Increasing extracellular potassium ion concentration will create a smaller concentration gradient across the cell membrane, making it less favorable for potassium ions to move out of the neuron through the leak channels. The leak channels are gated by both membrane voltage and concentration gradients, so alterations in extracellular potassium levels can impact the electrochemical equilibrium that regulates potassium movement. Ultimately, this can result in a reduced net diffusion of potassium ions out of the neuron.


Explain why a change in extracellular sodium did not alter the membrane potential in the resting neuron?

A change in extracellular sodium concentration would not alter the resting membrane potential of a neuron because the resting potential is primarily determined by the relative concentrations of sodium and potassium ions inside and outside the cell, as mediated by the sodium-potassium pump and leak channels. Changes in extracellular sodium concentration would not directly affect this equilibrium.


Why does increasing extracellular potassium ion cause membrane potential to change to a less negative value?

the membrane potential became less negative because less potassium ions went out of the cell (since the extra cellular space has higher concentration of potassium, and potassium goes down its concentration gradient, from high concentration to low concentration). since less potassium (K+)which is positive, left the cell more it became more positive (less negative)


Does an increase or decrease in potassium extracellular ions hyperpolarize a cell?

An extracellular increase of potassium (increase of intracellular Sodium) causes depolarization. The opposite, I presume, meaning high intracellular potassium (inside cell) and high extracellular sodium (outside cell) would be hyperpolarization


What effect does the opening of the potassium channels have on the charge difference across the neuron's membrane?

Opening of potassium channels allows potassium ions to move out of the neuron, leading to hyperpolarization by increasing the negative charge inside the neuron. This action increases the charge difference across the membrane, known as the resting membrane potential, making the neuron less likely to fire an action potential.


Through the membrane of a resting neuron highly permeable to potassium ions its membrane potential does not exactly match the equilibrium potential for potassium because the neuronal membrane is?

The neuronal membrane also has ion channels for other ions besides potassium, such as sodium or chloride, that can influence the resting membrane potential. These other ions contribute to the overall equilibrium potential of the neuron, which affects its resting membrane potential. Additionally, the activity of Na+/K+ pumps helps establish and maintain the resting membrane potential, contributing to the slight difference from the potassium equilibrium potential.


The role of the sodium potassium pump in maintaining a cells resting membrane potential?

The relative concentration of sodium (Na+) and potassium (K+) in the neuron with respect to their concentration in the extracellular space is what causes the electrical potential and the differential concentration is established by a Na-K Atpase which exudes sodium and transports potassium into the neuron.


Why is there a resting membrane potential across the cell membrane?

sodium/potassium pump


Why resting membrane potential value sodium is closer to equilibrium of potassium?

The resting membrane potential value for sodium is closer to the equilibrium of potassium because the sodium-potassium pump actively maintains a higher concentration of potassium inside the cell and a higher concentration of sodium outside the cell. This leads to a higher permeability of potassium ions at rest, resulting in the resting membrane potential being closer to the equilibrium potential of potassium.


How does potassium affect the resting membrane potential of the cardiac cell?

Potassium plays a crucial role in maintaining the resting membrane potential of cardiac cells. It helps establish the negative charge inside the cell by moving out of the cell through potassium channels. This outward movement of potassium ions contributes to the polarization of the cell membrane, creating a negative resting membrane potential.