safranin
The primary stain used in Gram staining is crystal violet.
The counter or secondary stain used in the Gram stain procedure is safranin.
Both processes use 2 stains. The Gram staining process uses crystal violet as the primary stain and safranin as the secondary stain. Acid-fast staining uses carbol fuchsin as the primary and methylene blue as the secondary.
Gram positive bacteria stain purple in the Gram staining technique because they have a thick layer of peptidoglycan in their cell walls, which retains the crystal violet dye used in the staining process.
The counter stain used in the Gram stain procedure is typically safranin or basic fuchsin, which stains Gram-negative bacteria pink or red. In the acid-fast stain procedure, the counter stain used is typically methylene blue or brilliant green, which stains non-acid-fast bacteria blue or green, allowing acid-fast bacteria to retain the primary stain color (carbolfuchsin).
The primary stain used in Gram staining is crystal violet.
The counter or secondary stain used in the Gram stain procedure is safranin.
Safranin is used as a counterstain in Gram staining to colorize Gram-negative bacteria, as they do not retain the crystal violet primary stain. This allows for better contrast and differentiation of Gram-negative bacteria against the purple Gram-positive bacteria.
Both processes use 2 stains. The Gram staining process uses crystal violet as the primary stain and safranin as the secondary stain. Acid-fast staining uses carbol fuchsin as the primary and methylene blue as the secondary.
No, iodine is not a basic stain. Iodine is commonly used in Gram staining to identify bacteria as either Gram-positive or Gram-negative based on their cell wall composition. It acts as a mordant in the staining process and helps to fix the crystal violet stain in Gram staining.
Gram positive bacteria stain purple in the Gram staining technique because they have a thick layer of peptidoglycan in their cell walls, which retains the crystal violet dye used in the staining process.
Sodium bicarbonate is used to adjust the pH of the staining solution in the Gram stain procedure. Merthiolate is used as a mordant to enhance the crystal violet staining in the Gram stain. Together, they help differentiate between Gram-positive and Gram-negative bacteria based on their cell wall characteristics.
Differential staining is the procedure that are used to distinguish organism based on their staining properties. Use of gram stain divide bacteria into two classes - gram positive which retain crystal violet stain purple colour, gram negative which lose their crystal violet and give pink colour. By this method we can differentiate two different types of bacteria having different cell wall composition that is the reason gram staining used widely as differential staining
Differential staining is the procedure that are used to distinguish organism based on their staining properties. Use of gram stain divide bacteria into two classes - gram positive which retain crystal violet stain purple colour, gram negative which lose their crystal violet and give pink colour. By this method we can differentiate two different types of bacteria having different cell wall composition that is the reason gram staining used widely as differential staining
Endospores have a unique structure with thick layers of protein and peptidoglycan that resist the staining process used in Gram staining. The dye used in Gram staining is unable to penetrate these layers, resulting in endospores not taking up the stain. Specialized staining techniques, such as the Schaeffer-Fulton method, are required to visualize endospores.
The counter stain used in the Gram stain procedure is typically safranin or basic fuchsin, which stains Gram-negative bacteria pink or red. In the acid-fast stain procedure, the counter stain used is typically methylene blue or brilliant green, which stains non-acid-fast bacteria blue or green, allowing acid-fast bacteria to retain the primary stain color (carbolfuchsin).
Gram-positive bacterium are those that are stained dark blue or violet by Gram Staining. This is in contrast to Gram-Negative Bacterium, which cannot retain the crystal violet stain, instead taking up the counter-stain and appearing red or pink. Gram-positive organisms are able to retain the crystal violet stain because of the high amount of peptidoglycan in the cell wall. Gram-positive cell walls typically lack the outer membrane found in Gram-negative bacteria.