The two chains of a piece of DNA must run in opposite directions (anti-parallel). One chain runs 5' to 3', and the other runs 3' to 5'.
In DNA replication, enzymes (DNA polymerases) work in the 3 prime to 5 prime end, creating the new strand in the 5 prime to 3 prime direction. This is due to their structure- they add bases to preexisting 3 prime anchors. Of the five carbons on the deoxyribose, the 3 prime is joined to a hydroxyl and the 5 prime is joined to a phosphate group.
DNA replication proceeds in opposite directions on the two strands of DNA due to their antiparallel structure. The leading strand is synthesized continuously towards the replication fork, while the lagging strand is synthesized discontinuously in segments called Okazaki fragments away from the replication fork. This difference is due to the need for primers to start each new DNA fragment on the lagging strand.
The numbers 3 and 5 are significant in DNA structure and function because they refer to the orientation of the sugar molecules in the DNA backbone. The DNA molecule is made up of two strands that run in opposite directions, with one strand running in the 3' to 5' direction and the other running in the 5' to 3' direction. This orientation is important for the replication and transcription of DNA, as it allows enzymes to read and copy the genetic information accurately.
Think of DNA as a zipper. The left one labelled 5' on the top and 3' on the bottom. The right one labelled 3' on the top and 5' on the bottom. ex. left 5'-------------------------3' right 3'-------------------------5' As you 'unzip' (with helicase), the teeth of the zipper are exposed. The copying mechanism moves along the original strand in a 5' to 3' direction ex left 5'------ .....................\ .......................--------------------3' .......................--------------------5' ....................../ right 3'------ (periods are merely space holders ignore them) On the 'left' strand, the DNA Polymerase attaches to the free 5' end and moves toward the helicase On the 'right' strand, the DNA Polymerase must attach near the helicase (zipper-handle) and move towards the top. It must start several times therefore lagging strands are fragmented.
In a double-stranded DNA molecule, the two strands run in opposite directions. One strand runs from the 5' to 3' direction, while the other runs from the 3' to 5' direction, hence they are antiparallel. This allows complementary base pairing between the strands, where adenine binds with thymine and guanine binds with cytosine.
Which direction must the string run for the sundial to work properly? Which direction must the string run for the sundial to work properly?
The direction the sun is in!!! and you are soooo from Macleran's class -Sarah
The two strands of nucleotides in a DNA molecule run in opposite directions, referred to as antiparallel. This means that one strand runs in a 5' to 3' direction while the other runs in a 3' to 5' direction. This arrangement is essential for DNA replication and other cellular processes.
The two strands of DNA molecule run in opposite directions, known as antiparallel orientation. This means one strand runs 5' to 3' direction while the other runs 3' to 5' direction.
Mountain ranges refer to a series of mountains aligned in a particular direction, usually forming a continuous line or sequence. Mountain chains, on the other hand, can be multiple ranges running parallel to each other or interconnected in a complex network. Essentially, mountain ranges are a subset of mountain chains.
a runner may run in either direction..........he must get to first ahead of the ball. It's a long way in the other direction..............
In DNA replication, enzymes (DNA polymerases) work in the 3 prime to 5 prime end, creating the new strand in the 5 prime to 3 prime direction. This is due to their structure- they add bases to preexisting 3 prime anchors. Of the five carbons on the deoxyribose, the 3 prime is joined to a hydroxyl and the 5 prime is joined to a phosphate group.
DNA replication proceeds in opposite directions on the two strands of DNA due to their antiparallel structure. The leading strand is synthesized continuously towards the replication fork, while the lagging strand is synthesized discontinuously in segments called Okazaki fragments away from the replication fork. This difference is due to the need for primers to start each new DNA fragment on the lagging strand.
The numbers 3 and 5 are significant in DNA structure and function because they refer to the orientation of the sugar molecules in the DNA backbone. The DNA molecule is made up of two strands that run in opposite directions, with one strand running in the 3' to 5' direction and the other running in the 5' to 3' direction. This orientation is important for the replication and transcription of DNA, as it allows enzymes to read and copy the genetic information accurately.
Think of DNA as a zipper. The left one labelled 5' on the top and 3' on the bottom. The right one labelled 3' on the top and 5' on the bottom. ex. left 5'-------------------------3' right 3'-------------------------5' As you 'unzip' (with helicase), the teeth of the zipper are exposed. The copying mechanism moves along the original strand in a 5' to 3' direction ex left 5'------ .....................\ .......................--------------------3' .......................--------------------5' ....................../ right 3'------ (periods are merely space holders ignore them) On the 'left' strand, the DNA Polymerase attaches to the free 5' end and moves toward the helicase On the 'right' strand, the DNA Polymerase must attach near the helicase (zipper-handle) and move towards the top. It must start several times therefore lagging strands are fragmented.
No idea. Biologers
one direction