quite simply, bonds. The strength of these bonds depends on the type of element or compound that forms the solid. These 'particles' you refer to are best known as 'atoms' and the atoms that form a solid are held together by these bonds.
RNA molecules are held together by covalent bonds, such as phosphodiester bonds in the sugar-phosphate backbone. In addition, RNA molecules also form hydrogen bonds between complementary bases (A-U and G-C) in the double-stranded regions.
Sugar molecules can be bonded together through a process called dehydration synthesis, where a water molecule is removed to form a glycosidic bond between the molecules. This process results in the formation of a disaccharide or polysaccharide.
The type of attraction that holds two water molecules together is hydrogen bonding. The partially positive hydrogen atom in one water molecule is attracted to the partially negative oxygen atom in another water molecule, creating a strong bond between them.
A combination of many disaccharides will yield a polysaccharaide, such as starch or cellulose
When two glucose molecules are chemically bonded together, a maltose molecule and a water molecule are produced. The process that links these two glucose molecules together is called a condensation reaction, which releases a water molecule as a byproduct.
Change phaze
RNA molecules are held together by covalent bonds, such as phosphodiester bonds in the sugar-phosphate backbone. In addition, RNA molecules also form hydrogen bonds between complementary bases (A-U and G-C) in the double-stranded regions.
protons
Sugar molecules can be bonded together through a process called dehydration synthesis, where a water molecule is removed to form a glycosidic bond between the molecules. This process results in the formation of a disaccharide or polysaccharide.
Cohesion
matter
Syrup
A covalent bond
covalent bonds.
hydrogen bonds,etc.
dehydration synthesis
The bond in water is covalent.