Te most important advance towards our understanding of the cellular basis of antibody response was provided by the clone selection theory by Mac Farlane Burnet in 1957.
Clonal selection is responsible for the production of a large population of identical B or T cells that specifically recognize and target a particular antigen. This process is critical for the adaptive immune system's ability to mount a targeted immune response against pathogens.
Antigen challenge and clonal selection are most likely to occur in the secondary lymphoid organs, such as the lymph nodes and spleen. These organs are where antigens encounter immune cells, triggering an immune response and the selection of specific immune cell clones.
Antigen-presenting cells (APCs) are nonlymphocyte cells that play a central role in clonal selection. They present antigens to T cells, triggering the immune response and selection of specific clones of T cells that can recognize and respond to the antigen.
1. An antigen presenting cell presents antigen on Class II MHC to a Helper T cell activating it 2. At the same time a B cell that has taken up and degraded the same pathogen displays antigen on its class II 3. The activated helper T cell binds to the B cell releasing cytokines and activating it 4. The activated B cell proliferates and differentiates into: 1) memory B cells 2) antibody-secreting plasma cells that produce antibodies specific for the pathogen
Evolution by natural selection.
The clonal-selection theory posits that each lymphocyte expresses a specific receptor for a particular antigen, and upon encountering its specific antigen, it proliferates and differentiates into effector cells. A false statement about this theory might be that all lymphocytes can recognize and respond to any antigen, as the theory emphasizes that only those with the matching receptor are activated. Furthermore, it does not suggest that immune memory is formed solely from the initial response, as memory cells are also generated during the clonal selection process for future encounters with the same antigen.
False
Clonal selection is responsible for the production of a large population of identical B or T cells that specifically recognize and target a particular antigen. This process is critical for the adaptive immune system's ability to mount a targeted immune response against pathogens.
Clonal selection and differentiation of lymphocytes provide the basis for immunological memory.
Antigen challenge and clonal selection are most likely to occur in the secondary lymphoid organs, such as the lymph nodes and spleen. These organs are where antigens encounter immune cells, triggering an immune response and the selection of specific immune cell clones.
The Clonal Selection Theory explain how the immune system can be both diverse and very specific at the same time.The theory states:All antibodies are precommitted to making a single antibody with a single specificityA single cell produces only one antibody which interacts with only one antigen with the highest specificityWhen the right antigen interacts with that cell, it leads to clonal expansion and proliferation of that cell, so that many daughter-cells are made with the exact same specificityThe ability to recognise an antigen is dependent on a receptor, and the receptor is a product of the same cell that secretes the antibody. This ensures that made antibodies will fit with the antigen they are supposed to bind.A clone is defined as a group of cells in which all daughter cells are equal in their specificity
Antigen-presenting cells (APCs) are nonlymphocyte cells that play a central role in clonal selection. They present antigens to T cells, triggering the immune response and selection of specific clones of T cells that can recognize and respond to the antigen.
1. An antigen presenting cell presents antigen on Class II MHC to a Helper T cell activating it 2. At the same time a B cell that has taken up and degraded the same pathogen displays antigen on its class II 3. The activated helper T cell binds to the B cell releasing cytokines and activating it 4. The activated B cell proliferates and differentiates into: 1) memory B cells 2) antibody-secreting plasma cells that produce antibodies specific for the pathogen
Natural Selection
Darwin's theory of evolution.
Natural selection
Random processes are not part of the theory of evolution by natural selection.