The white eyed female fruit fly has two recessive traits for eye color. The genotype would be xx for example.
In this case, the genotype of the white-eyed male fruit fly would be XwY, and the genotype of the heterozygous red-eyed female fruit fly would be XRXw. The expected ratio of genotypes in the offspring would be 1:1 for XRY (red-eyed males) and XRXw (red-eyed females).
The genotype for a white-eyed male fruit fly is X^wY, where X is the sex chromosome and Y is the Y chromosome. The w denotes the gene for white eyes located on the X chromosome. This genotype indicates that the male fruit fly has a white-eye phenotype due to the recessive white eye allele.
A white-eyed male fruit fly would have the genotype "X^wY," where "X^w" represents the recessive white eye allele on the X chromosome and "Y" represents the Y chromosome.
X"Y . I hate novanet .
The cross would result in a 1:1 ratio of white-eyed to red-eyed offspring. Half of the offspring would inherit the white-eyed trait from the white-eyed male, while the other half would inherit the red-eyed trait from the heterozygous red-eyed female.
In this case, the genotype of the white-eyed male fruit fly would be XwY, and the genotype of the heterozygous red-eyed female fruit fly would be XRXw. The expected ratio of genotypes in the offspring would be 1:1 for XRY (red-eyed males) and XRXw (red-eyed females).
The genotype for a white-eyed male fruit fly is X^wY, where X is the sex chromosome and Y is the Y chromosome. The w denotes the gene for white eyes located on the X chromosome. This genotype indicates that the male fruit fly has a white-eye phenotype due to the recessive white eye allele.
A white-eyed male fruit fly would have the genotype "X^wY," where "X^w" represents the recessive white eye allele on the X chromosome and "Y" represents the Y chromosome.
A Heterozygous female with a white eyed male.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
When Morgan mated a white-eyed male fruit fly with a red-eyed female fruit fly, the first generation offspring all had red eyes. In the next generation, because females would have the X chromosome for white eyes, about half the offspring would have white eyes. The offspring with white eyes were all male, meaning he discovered eye color in fruit flies showed a sex-linked trait. The result of this was a generation of red eyed and white eyed individuals. If the red eyed female was heterozygous, this is possible.
White eyes are recessive sex-linked genes in fruit flies. White eyed males fruit flies have XWY, where W is for white eyes.