Glycolosis (in the cytoplasm) and aerobic metabolism (in the mitochondria) are used to generate ATP from glucose in muscle cells.
The organic molecule that is readily hydrolyzed in muscle cells to generate large amounts of ATP is adenosine triphosphate (ATP). ATP is broken down through hydrolysis to release energy that is used for various cellular processes, including muscle contraction.
Excess glucose is stored in liver cells and muscle cells in the form of glycogen. When blood glucose levels are high, insulin signals these cells to take up glucose and convert it into glycogen for storage. This glycogen can later be broken down back into glucose when energy is needed.
Glucose transport into muscle cells is primarily facilitated by the glucose transporter 4 (GLUT4) carrier protein. This transporter is insulin-responsive and plays a crucial role in regulating glucose uptake by muscle cells to meet energy demands during exercise and recovery.
Active transport is a process that requires energy to move molecules across a cell membrane. In the case of glucose entering muscle cells, active transport proteins use energy to pump glucose molecules against their concentration gradient, allowing them to enter the cell even when there is a higher concentration of glucose outside the cell. This process ensures that muscle cells have a constant supply of glucose for energy production and muscle function.
The heart muscle contains self-excitable cells known as pacemaker cells. These cells generate electrical signals that control the heart's rhythm by initiating the contraction of the heart muscle.
Lactic acid
Lactic Acid
Lactic Acid
Muscle cells that break down glucose to generate ATP under oxygen deficient conditions will form lactic acid. This process is known as anaerobic glycolysis, where glucose is converted into lactic acid in the absence of adequate oxygen for cellular respiration.
The organic molecule that is readily hydrolyzed in muscle cells to generate large amounts of ATP is adenosine triphosphate (ATP). ATP is broken down through hydrolysis to release energy that is used for various cellular processes, including muscle contraction.
in human cells
Excess glucose is stored in liver cells and muscle cells in the form of glycogen. When blood glucose levels are high, insulin signals these cells to take up glucose and convert it into glycogen for storage. This glycogen can later be broken down back into glucose when energy is needed.
No, muscle cells do not release glucose into the blood. Instead, they take up glucose from the blood to use as fuel for energy production during muscle contraction. Glucose release into the blood is primarily regulated by the liver through a process called gluconeogenesis.
Muscle cells do not directly use maltose as an energy source. Maltose is a disaccharide composed of two glucose molecules linked together. Muscle cells break down maltose into its constituent glucose molecules with the help of the enzyme maltase. These glucose molecules are then used by muscle cells for energy production through processes like glycolysis and cellular respiration.
Glucose transport into muscle cells is primarily facilitated by the glucose transporter 4 (GLUT4) carrier protein. This transporter is insulin-responsive and plays a crucial role in regulating glucose uptake by muscle cells to meet energy demands during exercise and recovery.
* Insulin - released by pancreas - encourages liver and muscle cells to absorb glucose from the blood; stimulates the conversion of glucose ----> glycogen in liver/muscle cells.
Liver cells store chains of glucose in a molecule called glycogen, while muscle cells store glucose in the form of glycogen as well. Glycogen acts as a reserve of energy that can be broken down into glucose when needed for energy production.