The specimen should be in clear focus
The magnification of a microscope is calculated by multiplying the magnification of the objective lens by the magnification of the eyepiece. In this case, if you have a 10x low power objective and a 10x high power objective, the total magnification would be 100x (10x * 10x) for both objectives when used with the same eyepiece magnification.
When you change from low power magnification to high power magnification, the field of view typically decreases. This is because high power magnification zooms in on a smaller area, allowing for more detail but at the expense of seeing less of the surrounding area.
When you change from low power to oil immersion high power on a microscope, the field of view decreases. This is because high power objectives have a narrower field of view due to higher magnification, leading to a more detailed but smaller area being visible through the lens.
The high power objective on a compound microscope typically has a magnifying power of 40x or 50x.
If magnification increases ONLY, then resolving power does not increase. However, if the magnification increased while staying in focus (upgrading resolution and magnification with objective lense), shorter wavelengths are needed to stay in focus with increased magnification to yield the same high resolution as with previous objective lense, so this case, resolving power does increase.
The diameter of the field of view decreases when changing from low to high power magnification. This is because higher magnification zooms in closer on the specimen, limiting the area of the specimen that can be seen at one time.
The magnification of a microscope is calculated by multiplying the magnification of the objective lens by the magnification of the eyepiece. In this case, if you have a 10x low power objective and a 10x high power objective, the total magnification would be 100x (10x * 10x) for both objectives when used with the same eyepiece magnification.
Microscopes vary in power. You can determine total magnification by the eyepiece and the lens.
When you change from low power magnification to high power magnification, the field of view typically decreases. This is because high power magnification zooms in on a smaller area, allowing for more detail but at the expense of seeing less of the surrounding area.
Changing to the High Power Objective would result in a larger magnification of the letter but a smaller field of view, making the letter appear larger but limiting the area visible around it. Additionally, increasing magnification might reduce the brightness of the field of view due to the reduced light-gathering ability of the higher power lens.
The oil immersion lens or objective has power 90X-100X and an eyepiece lens generally in light microscope comes with 10X so total magnification of oil immersion lens is 100X10 = 1,000
When changing from low power to oil immersion high power, the field of view decreases. This is because oil immersion lenses have a higher magnification power, which allows for a more detailed view of the specimen but with a narrower field of view. This increase in magnification results in a smaller area of the specimen being visible at one time.
The standard microscope is that the eyepiece is 10x magnification, and three types of powered magnification helps it magnify even more. Low power is 4x, Medium power is 10x, and High power is 40x. Eyepiece and Low power is 40x, Eyepiece and Medium power is 100x, and Eyepiece and High power is 400x magnification in revolance to the naked eye.
The high power objective increases the magnification of the specimen (it contributes to a further magnification). It magnify specimens at greater resolutions, which allows you to see fine details.
low-power magnificatin = (10x)(4x) = 40x high-power magnification = (10x)(40x) = 400x It depends on what magnification you are looking for; high-power magnification OR low-power magnification.
It means you have a good microscope.
It is generally better to have a telescope with high resolving power rather than high magnification. Resolving power determines the ability to distinguish fine details in an image, while magnification simply increases the size of the image. High resolving power provides sharper and more detailed images, making it more useful for observing faint or distant objects in the night sky.