answersLogoWhite

0

Glycolysis can occur without oxygen. Although glycolysis does not require oxygen, it does require NAD+. Cells without oxygen available need to regenerate NAD+ from NADH so that in the absence of oxygen, at least some ATP can be made by glycolysis.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Biology

Why can glycolysis supply energy to cells when oxygen is not available?

Glycolysis can occur without oxygen. Although glycolysis does not require oxygen, it does require NAD+. Cells without oxygen available need to regenerate NAD+ from NADH so that in the absence of oxygen, at least some ATP can be made by glycolysis. -hazim17 sources: http://faculty.clintoncc.suny.edu/faculty/michael.gregory/files/bio%20101/bio%20101%20lectures/Cellular%20Respiration/cellular.htm This occurs via the process known as anaerobic respiration. The molecule lactic acid is used as the (temporary) electron acceptor instead of O2.


What do muscle cells in oxygen deprivation gain from the conversion of pyruvate?

In oxygen deprivation, muscle cells convert pyruvate into lactate through anaerobic glycolysis. This conversion allows the cells to regenerate NAD+ from NADH, enabling glycolysis to continue and produce ATP without oxygen. This helps sustain energy production in the absence of sufficient oxygen supply.


Lactic acid fermentation after glycolysis?

Lactic acid fermentation occurs when pyruvate, the end product of glycolysis, is converted to lactic acid in the absence of oxygen. This process helps regenerate NAD+ so that glycolysis can continue in the absence of oxygen, allowing for ATP production to continue. Lactic acid fermentation is a common mechanism in muscle cells during strenuous exercise when oxygen supply is limited.


What process is glucose needed for by every cell and what do they get from it?

Glucose is essential for cellular respiration, where it is broken down in the presence of oxygen to produce ATP (energy) for the cell. Cells use this energy to carry out various functions such as growth, repair, and movement.


How does fermentation enable glycosis to continue producing ATP?

During fermentation, cells convert NADH to NAD+ by passing high-energy electrons back to pyruvic acid. This action converts NADH back into the electron carrier NAD+, allowing glycolysis to continue producing a steady supply of ATP.

Related Questions

Does Glycolysis supply energy or store energy?

Glycolysis is the first step in releasing energy from glucose and therefore is supplying energy to the cell.


The difference between aerobic and anaerobic glycolysis is?

Aerobic glycolysis requires oxygen to break down glucose into energy, producing a higher yield of ATP. Anaerobic glycolysis does not require oxygen and produces lactate as a byproduct, leading to a lower yield of ATP. Anaerobic glycolysis is used during intense or short-duration activities when oxygen supply is limited.


What are the advantages of using glycolysis for energy supply?

sex


Why can glycolysis supply energy to cells when oxygen is not available?

Glycolysis can occur without oxygen. Although glycolysis does not require oxygen, it does require NAD+. Cells without oxygen available need to regenerate NAD+ from NADH so that in the absence of oxygen, at least some ATP can be made by glycolysis. -hazim17 sources: http://faculty.clintoncc.suny.edu/faculty/michael.gregory/files/bio%20101/bio%20101%20lectures/Cellular%20Respiration/cellular.htm This occurs via the process known as anaerobic respiration. The molecule lactic acid is used as the (temporary) electron acceptor instead of O2.


Glycolysis depends on a continuous supply of what?

Glycolysis depends on a continuous supply of glucose, which is the starting molecule for the pathway. Glucose is broken down into pyruvate through a series of enzymatic reactions in glycolysis to produce ATP and NADH for cellular energy.


What do muscle cells in oxygen deprivation gain from the conversion of pyruvate?

In oxygen deprivation, muscle cells convert pyruvate into lactate through anaerobic glycolysis. This conversion allows the cells to regenerate NAD+ from NADH, enabling glycolysis to continue and produce ATP without oxygen. This helps sustain energy production in the absence of sufficient oxygen supply.


Why is the supply of energy in the glycolytic system limited?

The supply of energy in the glycolytic system is limited because it relies on the breakdown of glucose to pyruvate to produce ATP in the absence of oxygen. This process is less efficient in generating ATP compared to aerobic respiration, and it can lead to the build-up of lactic acid, which can inhibit glycolysis. Additionally, the availability of glucose and other resources needed for glycolysis can also be limiting factors.


Do muscles enter into oxygen debt when they are functioning anaerobically?

Yes, muscles enter into oxygen debt when they are functioning anaerobically because they rely on anaerobic glycolysis to produce energy in the absence of oxygen. This process produces lactic acid as a byproduct, which needs to be cleared once oxygen supply is restored, hence leading to the oxygen debt.


Do plants supply us with both carbon and oxygen for your bodies with energy?

No they only supply us with oxygen,CO2


How do tissues get the oxygen they need for energy production?

The tissues get oxygen from oxygenated blood supply for energy production.


Why does fermentation occur in fungi?

Fermentation occurs in fungi to generate energy in the absence of oxygen. It allows them to break down sugars into energy-rich molecules like ATP under anaerobic conditions. This process helps fungi survive in low oxygen environments and is important for their growth and reproduction.


Lactate production in muscle cells?

During intense exercise, muscle cells produce lactate as a byproduct of anaerobic energy metabolism when oxygen supply is limited. This process helps regenerate NAD+ for glycolysis to continue and sustain energy production. Lactate can be metabolized in the liver or other tissues to produce more energy or converted back to pyruvate for further energy production.