The balanced equation is Cl2 + 2 KBr -> Br2 + 2 KCl.
The correct chemical equation for the reaction is: Cl2 + 2KBr → 2KCl + Br2. The reaction involves chlorine gas (Cl2) reacting with potassium bromide (KBr) to form potassium chloride (KCl) and bromine gas (Br2).
KCl: 2K(s) + Cl2(g) -> 2KCl(s) Br2: Br2(l) -> 2Br(s)
When potassium bromide (KBr) reacts with chlorine gas (Cl2), it forms potassium chloride (KCl) and bromine (Br2). This reaction is a redox reaction, with bromide ions being oxidized to bromine gas and chlorine being reduced to chloride ions.
To balance the equation K + Br₂ → KBr, you need to make sure the number of atoms of each element is the same on both sides of the equation. To balance this equation, you need to put a coefficient of 2 in front of KBr. This way, you will have 2 potassium atoms, 2 bromine atoms, and 2 KBr molecules on both sides of the equation.
To calculate percentage yield, first determine the theoretical yield using the stoichiometry of the reaction: 1 mol Cl2 produces 1 mol Br2, so 200 g Cl2 is equivalent to 3.125 mol Br2. The molar mass of Br2 is 159.808 g/mol, so the theoretical yield is 159.808 g/mol * 3.125 mol = 499.4 g. Then, divide the actual yield (410 g) by the theoretical yield (499.4 g) and multiply by 100 to get the percentage yield: (410 g / 499.4 g) * 100 = 82%.
2 K + Br2 -> 2 Kbr
The correct chemical equation for the reaction is: Cl2 + 2KBr → 2KCl + Br2. The reaction involves chlorine gas (Cl2) reacting with potassium bromide (KBr) to form potassium chloride (KCl) and bromine gas (Br2).
KCl: 2K(s) + Cl2(g) -> 2KCl(s) Br2: Br2(l) -> 2Br(s)
When potassium bromide (KBr) reacts with chlorine gas (Cl2), it forms potassium chloride (KCl) and bromine (Br2). This reaction is a redox reaction, with bromide ions being oxidized to bromine gas and chlorine being reduced to chloride ions.
Yes, the equation K + Br2 = KBr is a balanced chemical equation. For example, 2 K + Br2 = 2 KBr is one and another balance chemical equation is Fe + Cl2 = FeCl3.
To balance the equation K + Br₂ → KBr, you need to make sure the number of atoms of each element is the same on both sides of the equation. To balance this equation, you need to put a coefficient of 2 in front of KBr. This way, you will have 2 potassium atoms, 2 bromine atoms, and 2 KBr molecules on both sides of the equation.
cl2 kbr---kcl br2i think u mean balance it right ^^;here u have cl2 kbr---kcl br2 so what u do iscl2 kbr---kcl br2cl=2 cl=1k=1 k=1br=1 br=2so u need to balance that ...u need to add (2) to kbr and add (2) to kcl so that u have Cl2 (2)KBr ----(2)KCl Br2 hope that will help ^^ so now u have them balanced by adding 2 in front of kbr that means u r multiplying them by 2 so that K is going to be k=2 and br is going to be br=2 and u r doing that because there is br =1 on one side and the other side there is br=2 and u need them balanced. By adding 2 to kcl means that the other k now is k=2 so as cl. hope its helpful ^____~
To calculate percentage yield, first determine the theoretical yield using the stoichiometry of the reaction: 1 mol Cl2 produces 1 mol Br2, so 200 g Cl2 is equivalent to 3.125 mol Br2. The molar mass of Br2 is 159.808 g/mol, so the theoretical yield is 159.808 g/mol * 3.125 mol = 499.4 g. Then, divide the actual yield (410 g) by the theoretical yield (499.4 g) and multiply by 100 to get the percentage yield: (410 g / 499.4 g) * 100 = 82%.
When potassium bromide (KBr) is dissolved in water (H2O), the ions dissociate to form K+ and Br- ions. When elemental bromine (Br2) is added, the Br2 reacts with Br- ions to form bromine molecules (Br2), creating a red-brown color in the solution due to the formation of bromine.
This is a single displacement reaction, also known as a single replacement reaction. In this reaction, chlorine (Cl2) displaces bromine (Br2) from potassium bromide (KBr) to form potassium chloride (KCl) and elemental bromine (Br2).
The reaction 2KBr → 2K + Br2 is endothermic because heat must be supplied to break the bonds in potassium bromide (KBr) in order to form potassium (K) and bromine gas (Br2).
The given formula equation shows the reaction between chlorine gas (Cl2) with potassium bromide (KBr) solution, yielding potassium chloride (KCl) solution and liquid bromine (Br2). It represents a single displacement reaction where chlorine displaces bromine from the potassium bromide solution to form potassium chloride and bromine.