answersLogoWhite

0

Yes, CH3NH2, also known as methylamine, can exhibit London dispersion forces. London dispersion forces are present in all molecules to some extent, as they are caused by temporary fluctuations in electron density that induce weak attraction between molecules.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Chemistry

What forces oppose vaporization in CH3NH2?

If you draw out the Lewis structure of SiCl4 you will find that the molecule is of the tetrahedral shape with zero lone pairs. ( I recommend going over your electron group arrangements) meaning that the molecule is NON-POLAR. If a molecule is non-polar then the only IF force present opposing vaporization would be dispersion. When you have a polar molecule there will be dipole- dipole IF's present also. Hope this helps


Is CH3CH2CH3 London dispersion force?

Yes, CH3CH2CH3 (propane) can experience London dispersion forces. London dispersion forces are weak intermolecular attractive forces that all molecules exhibit due to temporary shifts in electron distribution, resulting in temporary dipoles.


Does ch4 have London dispersion?

Yes, CH4 (methane) does exhibit London dispersion forces due to temporary fluctuations in electron distribution around the molecule. These dispersion forces are the weakest intermolecular forces and are responsible for the non-polar nature of methane.


What intermolecular forces are present in C6H14 H2O HCHO C6H5OH?

In C6H14 (hexane) and H2O (water), there are London dispersion forces, dipole-dipole interactions, and hydrogen bonding. In HCHO (formaldehyde), there are dipole-dipole interactions and London dispersion forces. In C6H5OH (phenol), there are hydrogen bonding, dipole-dipole interactions, and London dispersion forces.


Is methanol London dispersion?

No, methanol is not a London dispersion force because it is a polar molecule with a permanent dipole moment. London dispersion forces, also known as van der Waals forces, are weak attractions between nonpolar molecules or atoms due to temporary fluctuations in electron distribution.

Related Questions

What is the intermolecular forces present in C3H8?

The only intermolecular forces in this long hydrocarbon will be dispersion forces.


What is the intermolecular force for CBr4?

Dipole-Dipole and covalent sigma bond forces.


What forces oppose vaporization in CH3NH2?

If you draw out the Lewis structure of SiCl4 you will find that the molecule is of the tetrahedral shape with zero lone pairs. ( I recommend going over your electron group arrangements) meaning that the molecule is NON-POLAR. If a molecule is non-polar then the only IF force present opposing vaporization would be dispersion. When you have a polar molecule there will be dipole- dipole IF's present also. Hope this helps


What are the intermolecular forces of CH3CH2CH2OH?

London dispersion forces


What type of intermolecular force is present in c6H12?

London dispersion forces (instantaneous induced dipole-dipole interactions.)


Is argon a dipole-dipole forces or hydrogen bonding or London dispersion forces?

London dispersion vander walls force


Is CH3CH2CH3 London dispersion force?

Yes, CH3CH2CH3 (propane) can experience London dispersion forces. London dispersion forces are weak intermolecular attractive forces that all molecules exhibit due to temporary shifts in electron distribution, resulting in temporary dipoles.


Does ch4 have London dispersion?

Yes, CH4 (methane) does exhibit London dispersion forces due to temporary fluctuations in electron distribution around the molecule. These dispersion forces are the weakest intermolecular forces and are responsible for the non-polar nature of methane.


What is the intermolecular force of SiBr4?

London forces


Who are London Dispersion Forces named after?

I think it is the German-American physicist Fritz London :)


What is the strongest bonding ionic dipole dipole or London dispersion?

weakest to strongest: they are in this order: London dispersion, dipole-dipole, hydrogen bonding, ionic


What intermolecular forces are present in C6H14 H2O HCHO C6H5OH?

In C6H14 (hexane) and H2O (water), there are London dispersion forces, dipole-dipole interactions, and hydrogen bonding. In HCHO (formaldehyde), there are dipole-dipole interactions and London dispersion forces. In C6H5OH (phenol), there are hydrogen bonding, dipole-dipole interactions, and London dispersion forces.