Yes, helicase breaks hydrogen bonds between the nitrogenous base pairs of DNA during replication, allowing the double helix to unwind and separate into two single strands. This process is essential for the replication of DNA.
The enzyme that separates DNA by breaking the hydrogen bonds that link the nitrogen bases is called DNA helicase. It unwinds the double-stranded DNA molecule during processes such as DNA replication and transcription by breaking the hydrogen bonds between the base pairs.
When water evaporates, it is the hydrogen bonds between water molecules that break, not the covalent bonds within each water molecule. The hydrogen bonds are weaker intermolecular forces that hold water molecules together. Breaking these bonds allows the water molecules to escape as vapor.
Heat is the most common factor that breaks hydrogen bonds in DNA, as it causes the double helix to unwind and separate. Enzymes called DNA helicases also contribute by unwinding the DNA strands during processes like replication and transcription.
Weak hydrogen bonds between complementary pairs allow for DNA strands to easily separate during processes like replication and transcription. This allows for efficient DNA copying and gene expression. Additionally, weak hydrogen bonds provide stability to the DNA double helix structure without requiring excessive energy to break them.
a hydrogen bond is a weak interaction involving a hydrogen atom and fluorine, oxygen, or nitrogen atom...... there for it must form, not break because it is a weak interaction!
The enzyme helicase breaks hydrogen bonds in DNA.
The enzyme helicase.
Helicase
Helicase enzyme breaks hydrogen bonds between base pairs in DNA strands to unwind the double helix structure. Polymerase enzyme breaks the bonds between nucleotides in the DNA strand being replicated, allowing for the addition of new nucleotides during DNA replication.
The enzyme that breaks the hydrogen bonds during DNA replication is called helicase.
Helicase ! (:
No, helicase enzymes unwind and separate the double-stranded DNA helix by breaking the hydrogen bonds between complementary nucleotide base pairs. They do not break the sugar-phosphate backbone of the DNA molecule.
The enzyme responsible for breaking hydrogen bonds during DNA replication is called DNA helicase.
The enzyme that separates DNA by breaking the hydrogen bonds that link the nitrogen bases is called DNA helicase. It unwinds the double-stranded DNA molecule during processes such as DNA replication and transcription by breaking the hydrogen bonds between the base pairs.
Helicase
The enzyme responsible for unwinding the DNA molecule for replication is called helicase. Helicase breaks the hydrogen bonds between the DNA base pairs, allowing the two strands to separate and expose the nucleotide bases for replication.
The enzyme that breaks the bonds between the complementary parent strands during DNA replication is DNA helicase. DNA helicase unwinds the double helix by breaking the hydrogen bonds between the base pairs, allowing for the strands to separate and be copied.