to prepare 1N we have to dilute 40gms of NaOH in 1 litre of water as for NaOH normality =molarity so to prepare 0.1N NaOH we have to dilute 4gms of NaOH in 1 litre of water..
To prepare a 0.01N NaOH solution, you would need to dissolve 0.4 grams of NaOH in 1 liter of water. Make sure to wear proper protective gear and use a glass stirring rod to dissolve the NaOH slowly in the water to prevent splattering. Measure and mix thoroughly to ensure uniformity of the solution before use.
To prepare a 1N NaOH solution from a 10N NaOH solution, you can dilute it by adding 1 part of the 10N NaOH solution to 9 parts of water. Measure the volume of the 10N NaOH solution needed based on the amount of 1N NaOH solution you want to prepare. Always add the concentrated solution to water slowly and mix well.
To prepare a 0.1N solution of NaOH, dissolve 4g of NaOH pellets in enough distilled water to make 1 liter of solution. This will result in a solution with a concentration of 0.1N of NaOH.
Yes, you can make a 1N NaOH solution from a 0.1N NaOH solution by diluting it 10 times. For example, to make 1 liter of 1N NaOH solution, you would mix 100 ml of the 0.1N NaOH solution with 900 ml of water.
To prepare a 0.01N KBr solution, dissolve 0.74g of KBr in 1 liter of water. This will give you a solution with a molarity of 0.01N for KBr.
To prepare a 0.01N NaOH solution, you would need to dissolve 0.4 grams of NaOH in 1 liter of water. Make sure to wear proper protective gear and use a glass stirring rod to dissolve the NaOH slowly in the water to prevent splattering. Measure and mix thoroughly to ensure uniformity of the solution before use.
To prepare a 1N NaOH solution from a 10N NaOH solution, you can dilute it by adding 1 part of the 10N NaOH solution to 9 parts of water. Measure the volume of the 10N NaOH solution needed based on the amount of 1N NaOH solution you want to prepare. Always add the concentrated solution to water slowly and mix well.
To prepare a 0.1N solution of NaOH, dissolve 4g of NaOH pellets in enough distilled water to make 1 liter of solution. This will result in a solution with a concentration of 0.1N of NaOH.
Yes, you can make a 1N NaOH solution from a 0.1N NaOH solution by diluting it 10 times. For example, to make 1 liter of 1N NaOH solution, you would mix 100 ml of the 0.1N NaOH solution with 900 ml of water.
To prepare a 0.01N KBr solution, dissolve 0.74g of KBr in 1 liter of water. This will give you a solution with a molarity of 0.01N for KBr.
This solution contain 26,3 g NaOH.
The molarity of a NaOH solution is determined by the concentration of NaOH in moles per liter of solution. It is calculated by dividing the moles of NaOH by the volume of solution in liters. For example, a 0.1 M NaOH solution would contain 0.1 moles of NaOH per liter of solution.
A 50% NaOH aqueous solution means that the solution contains 50% sodium hydroxide (NaOH) by weight and the rest is water. This concentration indicates that for every 100 grams of the solution, 50 grams is NaOH.
To prepare 0.1N NaOH solution from a 1N NaOH solution, you can dilute 1 part of the 1N solution with 9 parts of water (since 1/10 = 0.1). Measure 1 volume of the 1N NaOH solution and add 9 volumes of water to it, then mix well to get your 0.1N NaOH solution.
To prepare a 1N NaOH solution, you would need to dissolve 40 grams of NaOH in water to make 1 liter of solution. This amount is used because 1N solution means 1 mole of NaOH per liter of solution, and the molar mass of NaOH is 40 g/mol, so 40 grams of NaOH is needed to have 1 mole in 1 liter of solution.
The answer is 0,625 moles.
In the preparation of a solution of HCl and NaOH to be standardized, it is crucial to accurately measure the quantities of the reagents and ensure their purity. The solutions should be mixed thoroughly to ensure homogeneity, and the final solution can then be standardized using a primary standard such as potassium hydrogen phthalate (KHP) for acid or sodium carbonate for base. Conducting titrations afterward with the standardized solution will help determine the exact concentrations of the initial solutions.