First, you must find the amount of moles of NaOH, using the concentration and volume given. By lowercase m, I'm assuming you mean molality, or molals of solution, which is the equation:
molality (m) = (moles of solute) / (total volume of solution (in liters))
To solve for moles of NaOH, your solute, rearrange the equation by multiplying volume on both sides to get:
moles solute = (molality)(total volume of solution)
Next, just plug in the information you know, which is 500 mL for the total volume and 125 m for the molality.
***Volume for concentration problems must be converted to liters, so remember that 1 L = 1000 mL
moles NaOH = (125 m)(0.500 L) = 62.5 moles
Finally, convert this to grams by finding the molar mass of NaOH using the Periodic Table:
22.99 + 16.00 + 1.008 = 39.998 g/mol
62.5 moles (39.998 g) / (1 mol) =249.875 grams NaOH
molarity equals moles of solute /volume of solution in litres . moles of NaOH equals 5g/40g = 0.125 and volume of solution will be volume of water + volume of NaOH = 0.5 litre+0.002 l which is nearly 0.5 litre . (volume of NaOH is calculated by its density) so molarity = 0.125mol/0.5litre = 0.25 M
I think you may have missed a decimal point somewhere. 125M of NaOH would be a solution of sodium hydroxide containing 125 moles per litre. One mole of a compound is the same number of grams as the molecular weight of the molecule. Sodium hydroxide has a molecular weight of 40 ( sodium 23, oxygen 16, and hydrogen 1), so a one molar solution would have forty grams of NaOH per litre. 500ml of a 1M solution would contain 20g. 500ml of a 125M solution would need 2 500g. 1L of a 125M solution would need 5 000g of sodium hydroxide in the litre. The maximum solubility for NaOH in water at 20 degrees is 1110g per litre, so if you tried to dissolve 5 000g in a litre you would be left with 3 890g undissolved. A 1.25M solution would have 1.25 times 40g per litre, which is 50g per litre. 500ml of this solution would have half this amount of NaOH, or 25g.
To calculate the grams of NaOH in the solution, first determine the moles of NaOH using the molarity and volume. Then, convert moles to grams using the molar mass of NaOH. The molar mass of NaOH is 40 g/mol.
To calculate the grams of NaOH in the solution, you first need to find the moles of NaOH present in 400.0 ml of the solution. The moles of NaOH can be calculated using the formula: moles = molarity x volume (in liters). Once you have the moles of NaOH, you can then calculate the grams using the formula: grams = moles x molecular weight.
To make a 10% NaOH solution, you would need 100 grams of NaOH per liter of water. So to make 1 liter, you would need 100 grams of NaOH.
208g NaOH
molarity equals moles of solute /volume of solution in litres . moles of NaOH equals 5g/40g = 0.125 and volume of solution will be volume of water + volume of NaOH = 0.5 litre+0.002 l which is nearly 0.5 litre . (volume of NaOH is calculated by its density) so molarity = 0.125mol/0.5litre = 0.25 M
I think you may have missed a decimal point somewhere. 125M of NaOH would be a solution of sodium hydroxide containing 125 moles per litre. One mole of a compound is the same number of grams as the molecular weight of the molecule. Sodium hydroxide has a molecular weight of 40 ( sodium 23, oxygen 16, and hydrogen 1), so a one molar solution would have forty grams of NaOH per litre. 500ml of a 1M solution would contain 20g. 500ml of a 125M solution would need 2 500g. 1L of a 125M solution would need 5 000g of sodium hydroxide in the litre. The maximum solubility for NaOH in water at 20 degrees is 1110g per litre, so if you tried to dissolve 5 000g in a litre you would be left with 3 890g undissolved. A 1.25M solution would have 1.25 times 40g per litre, which is 50g per litre. 500ml of this solution would have half this amount of NaOH, or 25g.
how many grams are contained in 11.89 pounds?
To calculate the grams of NaOH in the solution, first determine the moles of NaOH using the molarity and volume. Then, convert moles to grams using the molar mass of NaOH. The molar mass of NaOH is 40 g/mol.
In order to find out how many grams is in 500ml, one must have a measurement of density available. If density is not known, it can be found by finding the volume of the substance in ml, finding mass in grams, and dividing mass by volume. From there, multiply the result by 500ml to find the amount of grams in 500ml of the substance.
This solution contain 26,3 g NaOH.
To calculate the grams of NaOH in the solution, you first need to find the moles of NaOH present in 400.0 ml of the solution. The moles of NaOH can be calculated using the formula: moles = molarity x volume (in liters). Once you have the moles of NaOH, you can then calculate the grams using the formula: grams = moles x molecular weight.
500mL = 100 tsp
To make a 10% NaOH solution, you would need 100 grams of NaOH per liter of water. So to make 1 liter, you would need 100 grams of NaOH.
To calculate the grams of NaOH needed, use the formula: grams = molarity x volume x molar mass. First, convert the volume to liters (4 liters). Next, calculate the grams using 8 M as the molarity and the molar mass of NaOH. This will give you the amount of NaOH required to make 4 liters of 8 M NaOH solution.
To calculate the grams of NaOH, first find the molar mass of NaOH (22.99 g/mol for Na + 16.00 g/mol for O + 1.01 g/mol for H) = 40.00 g/mol. 9.03 x 10^23 molecules of NaOH is equivalent to 1 mole of NaOH. Therefore, 9.03 x 10^23 molecules of NaOH is equal to 40.00 grams.