To make a 10% NaOH solution, you would need 100 grams of NaOH per liter of water. So to make 1 liter, you would need 100 grams of NaOH.
If the percent by mass of sodium hypochlorite (NaClO) in the bleach solution is 5.24%, then 100% - 5.24% = 94.76% is the water weight. For a 2500.0g solution, the mass of NaClO is 5.24% of 2500g = 131g. Since the remaining mass is water, the mass of NaCl (sodium chloride) in the solution would be zero.
To make a 5% water solution of sodium hydroxide, you would mix 5 grams of sodium hydroxide with 95 grams of water. This will give you a total of 100 grams of solution, with 5% of it being sodium hydroxide. Remember to always add the sodium hydroxide to the water slowly and with caution due to its caustic nature.
To prepare a 0.01N solution of sodium metabisulfite, you would need 2.31 grams of sodium metabisulfite per liter of solution.
The percent by weight of NaCl in a saturated solution at 50 degrees Celsius is approximately 26.3%. This means that in every 100 grams of the solution, 26.3 grams is NaCl.
To calculate the total amount of sodium chloride needed for a 13 L solution at 4 grams per liter, multiply the concentration by the volume of the solution: 4 grams/L x 13 L = 52 grams of sodium chloride. Therefore, you will need 52 grams of sodium chloride to make the 13 L solution.
To find the moles of sodium chloride solute in 155 grams of an 85.5% solution, first calculate the mass of sodium chloride present in the solution (mass percent x mass of solution). Then, convert the mass of sodium chloride to moles using its molar mass (58.44 g/mol). This will give you the number of moles of sodium chloride solute in the solution.
This is (mass of solute) divided by (mass of total solution) expressed as a percentage. The solute is what you are dissolving into the solution. Example: you have 90 grams of water, and you add 10 grams of salt (sodium chloride). The water is the solvent, sodium chloride is the solute, and the solution is salt water. 90 grams + 10 grams = 100 grams (mass of total solution). (10 grams) / (100 grams) = 0.1 --> 10% mass mass percent concentration.
If the percent by mass of sodium hypochlorite (NaClO) in the bleach solution is 5.24%, then 100% - 5.24% = 94.76% is the water weight. For a 2500.0g solution, the mass of NaClO is 5.24% of 2500g = 131g. Since the remaining mass is water, the mass of NaCl (sodium chloride) in the solution would be zero.
To make a 5% water solution of sodium hydroxide, you would mix 5 grams of sodium hydroxide with 95 grams of water. This will give you a total of 100 grams of solution, with 5% of it being sodium hydroxide. Remember to always add the sodium hydroxide to the water slowly and with caution due to its caustic nature.
Put 100 grams in a beaker and and around 500 mls of water until it dissolves, then top up the beaker to a liter. That is your 10% solution. The percentage solution is a ratio of the weight of the compound to the weight of the final solution.
To prepare a 0.01N solution of sodium metabisulfite, you would need 2.31 grams of sodium metabisulfite per liter of solution.
600 mL of 0,9 % sodium chloride: 6 x 0,9 = 5,4 grams NaCl
The percent by weight of NaCl in a saturated solution at 50 degrees Celsius is approximately 26.3%. This means that in every 100 grams of the solution, 26.3 grams is NaCl.
The molar mass of sodium hydroxide (NaOH) is approximately 40 g/mol. To prepare a 0.10 M solution in 100 mL, you would need 1.0 g of NaOH. This can be calculated using the formula: mass (g) = molarity (M) x volume (L) x molar mass (g/mol).
To calculate the total amount of sodium chloride needed for a 13 L solution at 4 grams per liter, multiply the concentration by the volume of the solution: 4 grams/L x 13 L = 52 grams of sodium chloride. Therefore, you will need 52 grams of sodium chloride to make the 13 L solution.
In chemistry, the concentration of a substance in solution is determined by molarity, which is symbolized by "M". This indicates the number of moles of a substance dissolved in one liter of a solvent (usually water). For example: - 1 mole of sodium chloride = 58 grams - If 116 grams of sodium chloride are dissolved in 1 liter of water, then that solution is a 2-molar (2 M) solution of sodium chloride. - If 232 grams of sodium chloride are dissolved in 1 liter of water, then that solution is a 4-molar (4 M) solution of sodium chloride.
40.8 grams